

Progress on Network of Field Observation and Research Stations for Natural Resource

Dr. Xiaohuang Liu

Integrated Natural Resources Survey Center, China Geological Survey

Deqing, China 2025.10.23

Self-introduction

Xiaohuang Liu

Professor, Integrated Natural Resources Survey Center, China Geological Survey; Key Laboratory of Natural Resource Coupling Process and Effects Ministry of Natural Resources

Disciplines

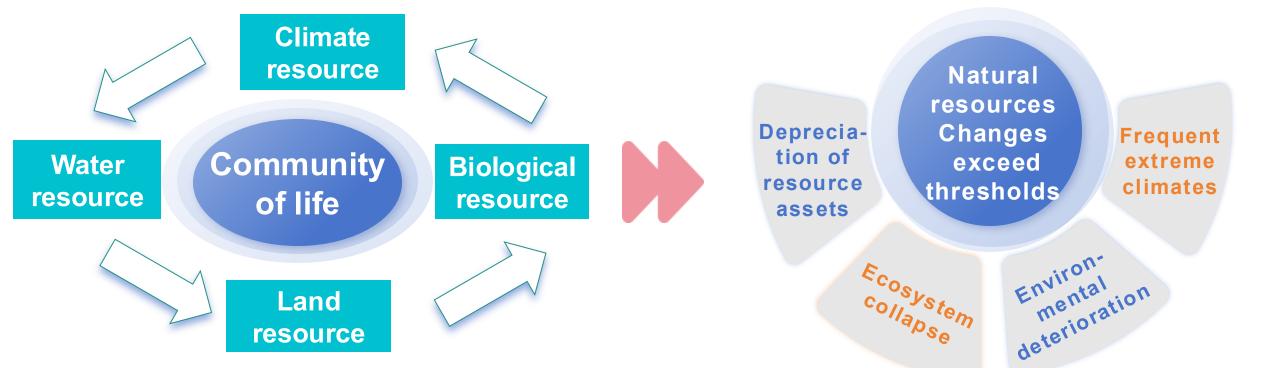
Geography Geoscience Geology Tectonic geology Exploration for resources

Skills and expertise

Integrated natural resources surveys
Integrated evaluation of natural resources
Regional geological and mineral survey
Exploration and evaluation of mineral deposits

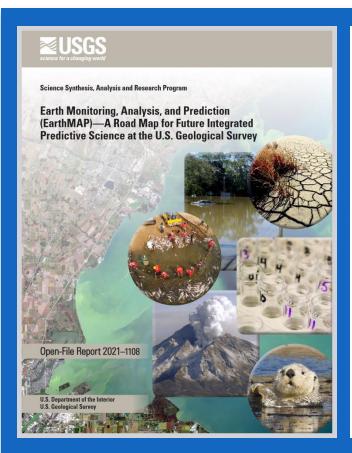
A community of

for human and natu

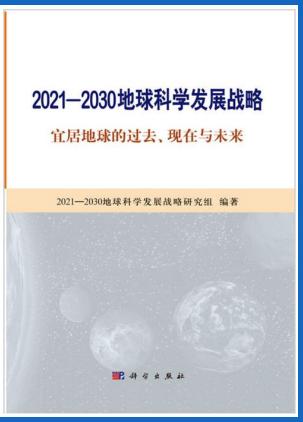


- 1. Scientific Essence & National Strategic Needs
- 2. Concept of Natural Resource Field
 Observation Station Network
- 3. Framework of Natural Resource Field
 Observation Station Network
- 4. Application Example of Natural Resource Field Observation Station Network
- 5. Prospects

(1) Scientific Essence: Scientific connotation and strategic significance


The Earth's Water resources(hydrospthere), Land resources(pedosphere), Climate resources(atmosphere), andBiological resources (biosphere) are interconnected.

A natural resource change exceeds a certain threshold could lead to complex problems of resources and ecosystems


(1) Scientific Essence: Scientific connotation

and strategic significance

USA: EarthMAP Program (2020—2030)

China: Habitable Earth Program (2021—2030)

To address these issues, the international community has launched a number of initiatives and put forward a series of scientific research frameworks for resources and ecology based on the process of "observation – experiments – analysis – modelling– decision support":

- ➤ USA: Earth Monitoring, Analysis, and Prediction (EarthMAP) (2020—2030)
- China: Strategy for the Development of Earth Sciences: The Past, Present, and Future of a Habitable Earth (2021—2030)

(2) National Strategic Needs

To unify the management of national natural resources, the Ministry of Natural Resources of PRC was established in 2018.

Functional task

01

Identify the types, quantity, quality and spatial patterns of natural resources as well as their changes

Regulate the intensity of the development, utilization and protection of natural resources

03 Restore degraded ecosystems

Management objective

Prevent the excessive use of natural resources

Prevent ecological problems caused by utilization of natural resources

Optimizing the Production-Living-Ecological Space

Build a beautiful China 全面推进美丽中国建设

Implement the national natural ecological resources risk monitoring and early warning project.



1. Scientific Essence & National Strategic Needs

- 2. Concept of Natural Resource Field
 Observation Station Network
- 3. Framework of Natural Resource Field
 Observation Station Network
- 4. Application Example of Natural Resource Field Observation Station Network
- 5. Prospects

VS

Physical examination of human being

Physical examination of Natural resources and ecosystem

Physical examination of Natural resources and ecosystem: Why? How? Who?

Idea of Field Observation Network— Physical

UN GEONOW 2025 第二届联合国地信周

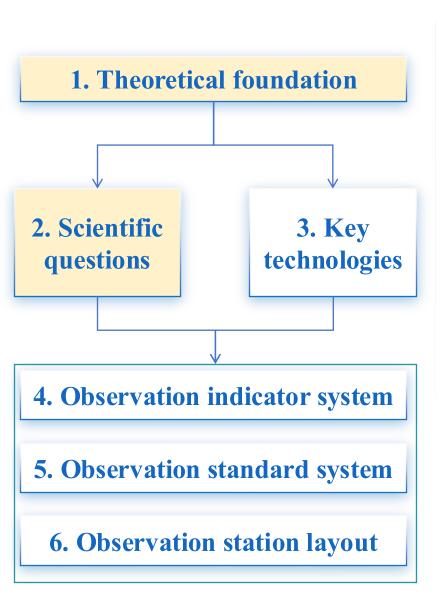
examination of Humans **VS** Natural Resources & Ecosystem

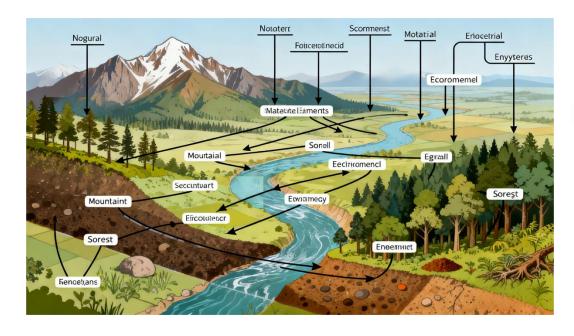
Category	Sampling analysis	Continuous monitoring	Key indicators	Scenario Categories	Measures
Humans	Routine blood/urine tests	Ultrasound (B-mode), X-ray fluoroscopy, electrocardiogram (ECG), etc.	Height, weight, hearing, vision, etc.	Healthy	No intervention
				Potential	Regulate lifestyle
				Mild	Medical intervention
				Severe	Treatment
Natural Resources & ecosystem	Field sampling of water, soil, forests, and grass	①Water: flow rate, velocity, water level, etc.	Water: river channel, shoreline, etc.	Safety	Development
		② Soil: temperature, respiration, moisture, infiltration, etc.	Soil: profile structure, etc.	Potential	Protection
		③Forests/grasslands: phenology, biomass growth, evapotranspiration,etc	Forests/grasslands: stand structure, lcommunity trait, etc.	Severe	Restoration
		4Atmosphere: precipitation, temperature, wind speed, etc.	Atmosphere: climate zone		

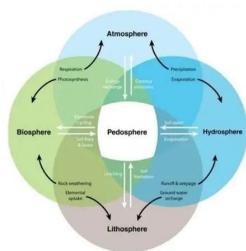
To perceive changes in natural resources and ecosystems, quantify the status of resource development and utilization, provide timely early warning of change-related risks, establishing an observation stations network of natural resources is needed.

A community of

for human and natu

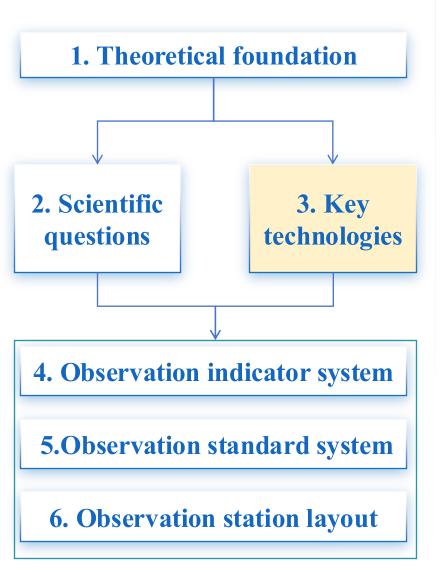

- 1. Scientific Essence & National Strategic Needs
- 2. Concept of Natural Resource Field
 Observation Station Network




- 3. Framework of Natural Resource Field
 Observation Station Network
- 4. Application Example of Natural Resource Field Observation Station Network
- 5. Prospects

Theoretical foundation and Scientific questions

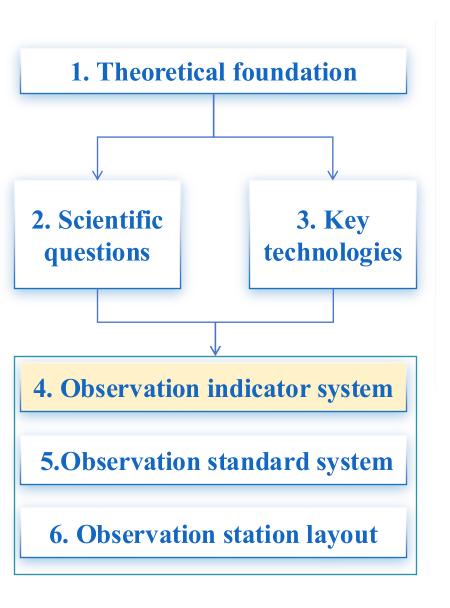
1. Key theoretical point


Natural resources, ecosystems, and environment form a complex and integrated whole (system), linked by geographic elements.

2. Key question:

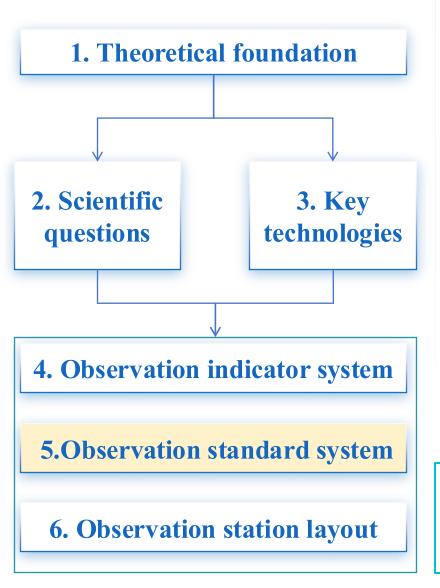
What effects will changes in natural resources have on ecosystem structure/functions and natural resource assets? How to perceive and predict these effects?

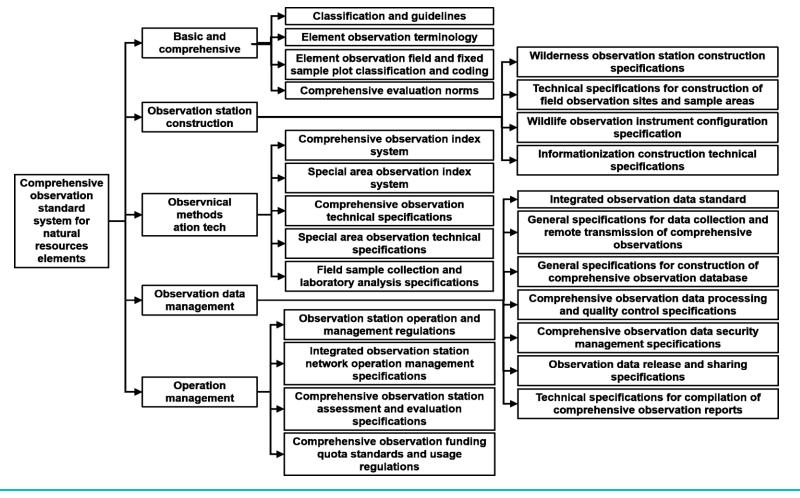
Key technologies



- O Collaborative Observation Technology: Multi-scale integration of satellite remote sensing, aerial remote sensing, ground station networks, and mobile observations.
- Full-process Technology: a closed-loop process consisting of observation and experiment → process modelling→ prediction and evaluation → intelligent decision-making.

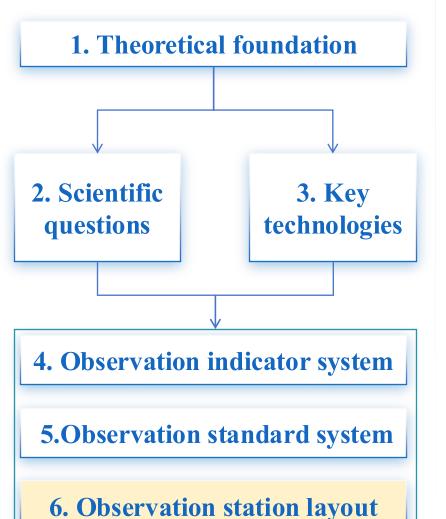
indicator system

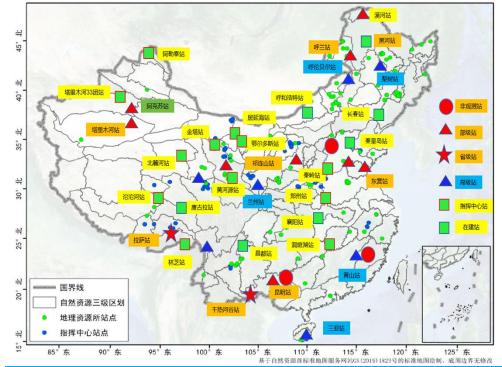

Key Observation Indicators


- Climate resource: precipitation, sunshine duration, temperature and humidity.
- ➤ Biological resource: evapotranspiration, coverage (NDVI), leaf area (LAI), carbon fixation (NPP). Diameter at breast height, tree height, age, stemflow and sap flow, litter thickness, litter moisture, degree of decay, community.
- ➤ Land resource: Moisture, temperature, N, P, K content and pH, organic matter content, runoff, infiltration.
- ➤ Water resource: flow rate, flow velocity, water level and quality. glacier thickness, glacier ablation rate, thickness of the permafrost active layer

Mainly study the structural allocation of natural resources (types, quantity, quality, and so on), and their ecological functions.

standard system





Standard system of Observation Networks includes five major categories (station network construction, data collection, modelling, product services, and operational mode) and 25 documents.

station layout

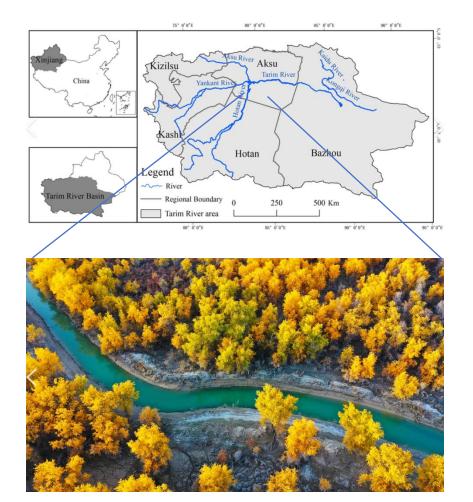
Since the start of Natural Resource Field Observation Station Network in 2019, we have formed a three-level network:

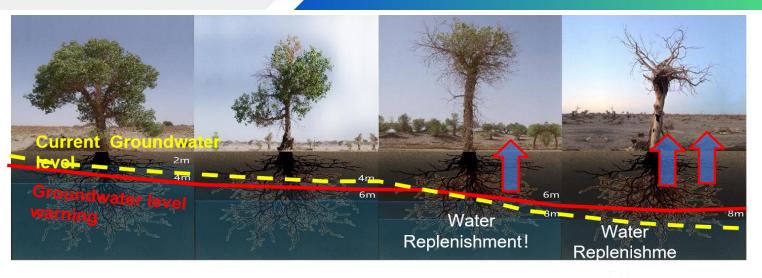
- ✓ 11 Main stations (100% coverage)
- ✓ 25 Sub-stations (25% coverage)
- ✓ 200 Observation points (25% coverage)
- (1) Bottom-layer, serving for research
- Main stations: control Level-1 zoning (11 in total)
- Sub-stations: control Level-2 zoning (105 in total)
- Observation points: control Level-3 zoning (800 in total)
- (2) Top-layer, serving for Management

Main stations, Sub-stations, Observation points, dynamic monitoring points

A community of

for human and natu


- 1. Scientific Essence & Strategic Value National Demands
- 2. Concept of Natural Resource Field
 Observation Station Network
- 3. Framework of Natural Resource Field
 Observation Station Network



- 4. Application Example of Natural Resource Field Observation Station Network
- 5. Prospects

4. Application example

Forest stage of Populus euphratica	Groundwater safety warning level (m)
Young	4.0
Near adult	5.0
Adult	6.9
Old	7.8

Based on this observation network, we investigated the relationship between the growth of *Populus* forest of different ages and the duration of groundwater level persistence in the Tarim Basin.

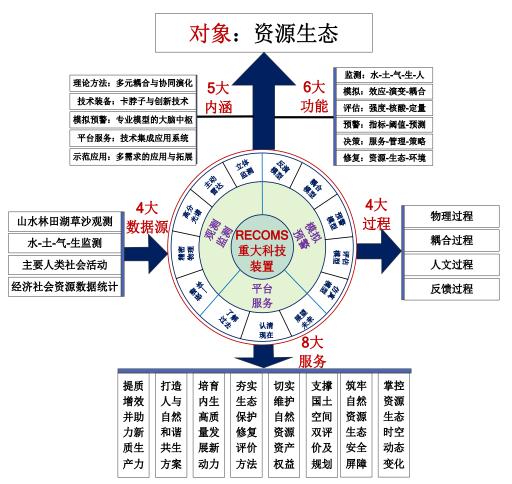
A community of

for human and natu

- 1. Scientific Essence & National Strategic Needs
- 2. Concept of Natural Resource Field
 Observation Station Network
- 3. Framework of Natural Resource Field
 Observation Station Network
- 4. Application Example of Natural Resource Field Observation Station Network

5. Prospects

5. Prospect—Form four unities


- An observation network covering national-level tertiary zones
- 02 A set of long-term continuous observation datasets
- 03 A full-process standards and specifications system
- A theoretical model of natural resource change effects

Support scientific research and management in natural resources and related fields

5. Prospect—Build "RECOMS"

- ♦ Research Objects: Nature resources and Ecosystems
- ♦ 5 Core Connotations: Theory&Methods, Equipments, Modelling&Early Warning, Data Platform&Services, Pilot
- ♦ 6 Major Functions: Monitoring, Modelling, Assessment, Early Warning, Decision-making, Restoration.
- ♦ 4 Major Data Sources: Ecological observation, Monitoring, Human activities, Socio-economic statistics
- ♦ 4 Key Processes: Physical Process, Coupling Process, Human Process, Feedback Process
- ♦ 8 Major Services: New-quality productive forces, solutions for harmonious coexistence, high-quality development, harmonious coexistence between man and nature, ecological restoration, natural resource assets, territorial spatial planning, ecological security, dynamics of natural resources

Build RECOMS

Resource Ecosystem Cooperation Observation and Monitoring System (RECOMS), a China-led Large-scale Scientific Observation Facilities

Thanks for your attention!

e-mail: liuxh19972004@163.com