Moganshan Dialog: Geospatial I.D.E.A.S to Accelerate SDGs GeoNow 2025, Deqing, China

Bridging the Science and Digital Innovation Divide through GeoAl: Use Cases for Disaster Risk Reduction

Tiziana Bonapace
Director
Information and Communications Technology and Disaster Risk Reduction Division

Contents

01

Our Mandates

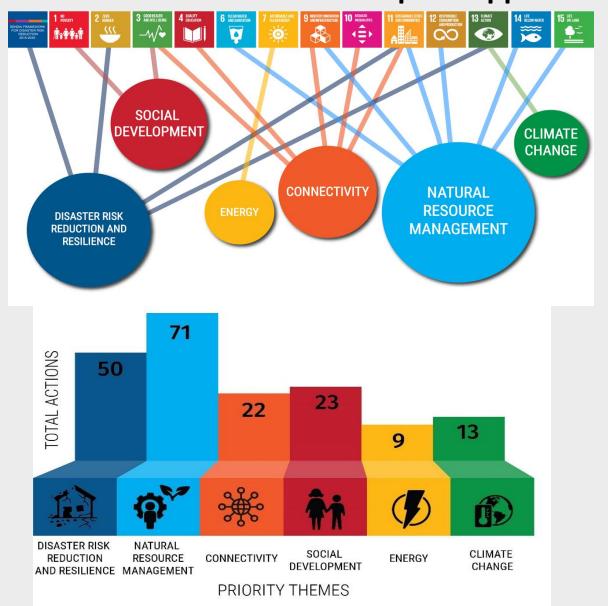
02

Seize the opportunities

03

Collaboration

Our Mandates: Global



- Al and SDGs

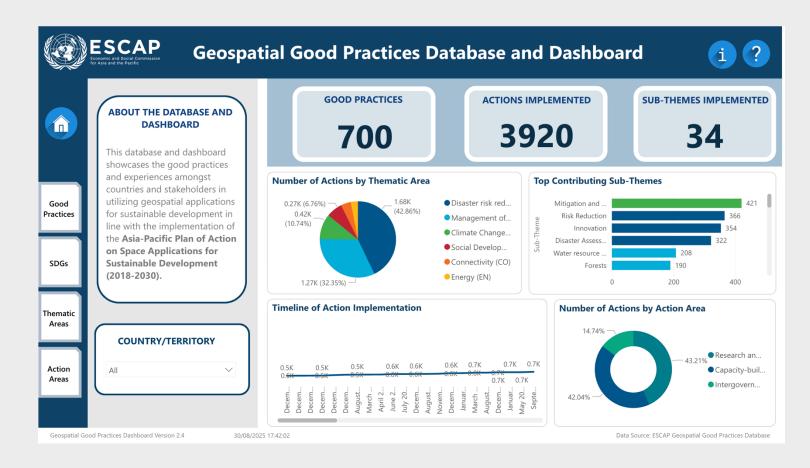
- ☑ In the Pact for the Future (Annex on Global Digital Compact), Al is recognized as a transformative tool capable of accelerating progress toward the Sustainable Development Goals (SDGs).
- ☑ The Declaration on Future Generations, underscores the transformative potential of AI in achieving the SDGs.
- ✓ UN Resolution (A/RES/78/311): Enhancing international cooperation on capacity-building of artificial intelligence.
- The UN Resolution (A/RES/79/322): Role of artificial intelligence in **creating new opportunities** for sustainable development in Central Asia

Asia-Pacific Plan of Action on Space Applications for Sustainable Development (2018–2030)

Our Mandates: Regional

Supporting Countries by Leveraging AI and Digital Innovations in Geospatial Applications The Fourth Ministerial Conference on Space Applications for Sustainable Development in Asia and the Pacific Jakarta, 26 October 2022

Geospatial Practices Database and Dashboard


Sharing of implementation progress towards the Plan of Action

Easy-to-use storage and sharing of good practices from around the region

Allowing for data to be **uploaded and shared** via a portal **at any time**

It enables users to...

- Showcase and share good practices
- **Be inspired** by innovative examples
- Seek collaboration

Collect, store, and share good practices on space applications in support of sustainable development

Seize the opportunities

GeoApps

- Al-powered tool
- Assists readers to query and generate information about geospatial practices across the Asia-Pacific
- Synthesizes information from the Compendium and other knowledge products

Visit http://geo-apps.info to learn more on how geospatial applications contribute to sustainable development!

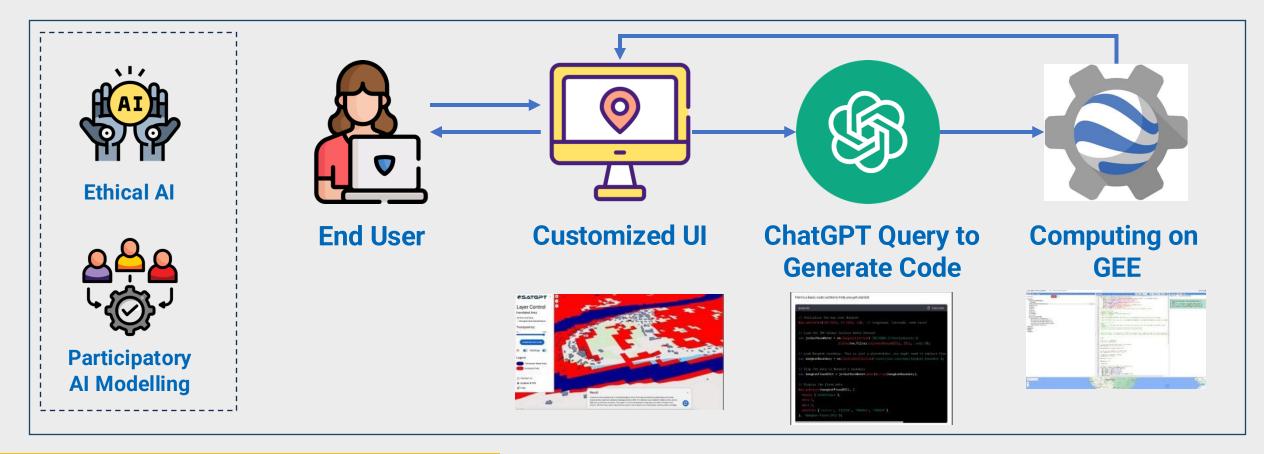
Geospatial Practices for Sustainable Development: Compendium series

The Compendium serves as a **benchmark** for the region's efforts to **implement the Plan of Action**, fostering knowledge-sharing, peer learning, and innovative solutions for sustainable development.

Seize the opportunities

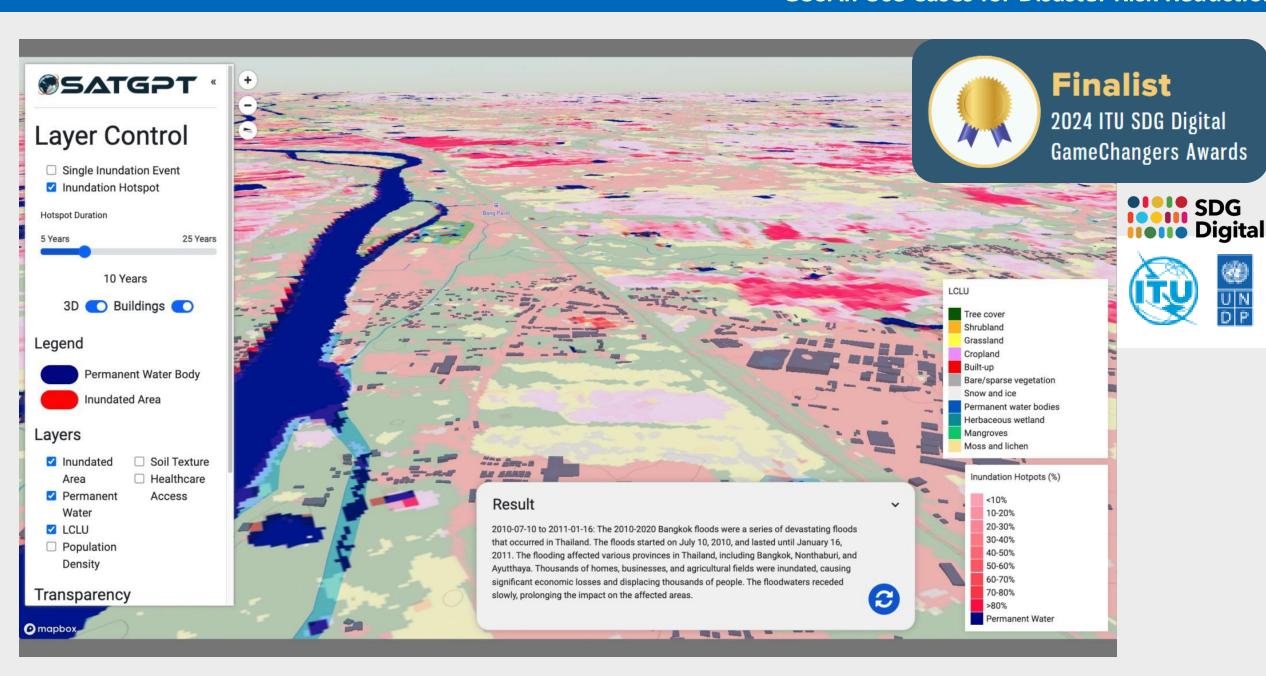
GeoAl: Use Cases for Disaster Risk Reduction

SATGPT


- Flooding has affected over 3 billion people and caused over \$900 billion in losses in the past 30 years in the Asia and the Pacific.
- SatGPT is a flood mapping expert accessible to every user in the region.

Historical flood maps in less than 1 minute at a minimal cost

Seize the opportunities



Infrastructure

Seize the opportunities GeoAl: Use Cases for Disaster Risk Reduction

Assessing Economic Losses from Inundation in Karawang, Indonesia: A Multi-Platform Geospatial Analysis Group 4: Parwati, Marina, Jack, Koko, **Total Losses** (Rp) BRIN BNPB Point Floods Inundation (%) 2.3_T 362.8_B 42_B 35_B 22.8_R Cropland Wetland Introduction Inundation is a recurrent issue in Karawang, Indonesia, causing significant socioeconomic and environmental disruptions. The region's vulnerability is heightened by its reliance on agriculture, infrastructure, and ecosystems. This study aims to quantify LC the extent and economic impact of the recent inundation using a geospatial analysis approach. By leveraging SATGPT, Google Earth Engine (GEE), and QGIS, we identify high-Tree cover risk zones and estimate associated financial losses, contributing to better disaster risk Cropland

This case study was developed during the training hosted in November 2024 in Jakarta. Indonesia. Participants proceeded to publish this as a conference paper, which showcased the use of SatGPT with socioeconomic data for estimating economic losses

Area (ha)

221

106

756

Built-up

Mangroves

Shrubland

Grassland

Herbaceous wetland

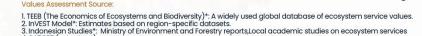
Bare / sparse vegetation Permanent water bodies

Inundated area in Kerawang

Total Inundated LC

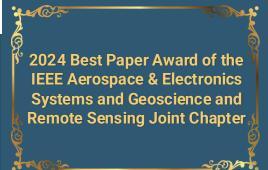
29,650

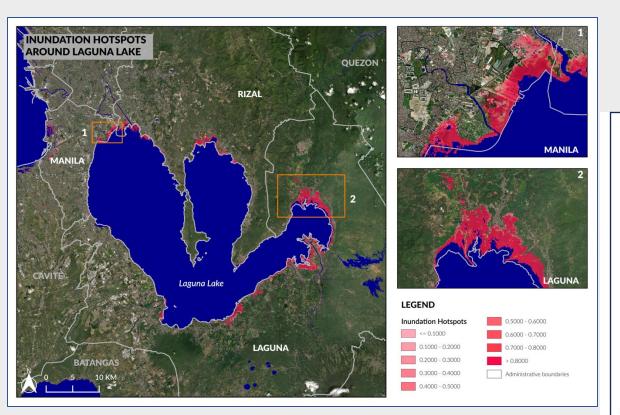
management strategies.


The study used SATGPT for initial inundation mapping, GEE for validation, and QGIS for detailed spatial and economic analysis. Affected land-use categories were quantified, and economic losses were estimated using standardized valuation metrics. Results were validated with BNPB data and visualized via QGISWEB.

The inundation affected **30,790 hectares**, with cropland suffering the most significant damage. Total losses reached **Rp2,835,440,000,000**, affecting croplands, forests, wetlands, built-up areas, and mangroves. The model showed strong agreement with BNPB data, demonstrating its accuracy.

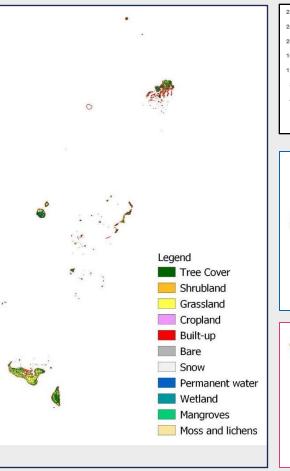
Discussion

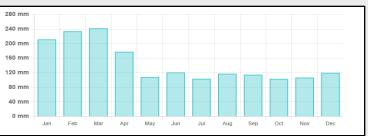

The study underscores the value of geospatial tools in disaster analysis.


Croplands were the most vulnerable, highlighting the need for improved agricultural resilience. Ecosystem restoration, like mangroves and wetlands, could mitigate future flood risks. The methodology offers a replicable framework for inundation-prone areas.

Flood Impact Analysis: Karawang, Indonesia

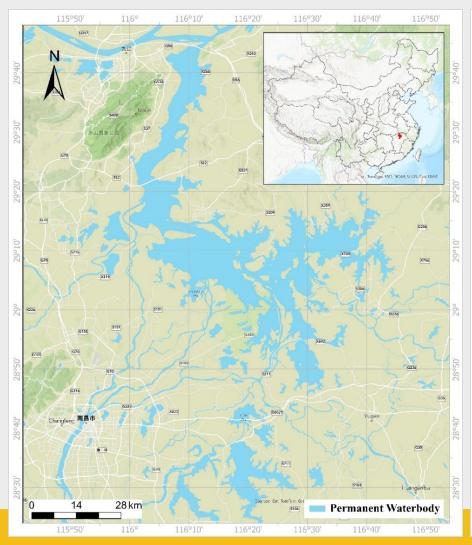
0.1109/AGERS65212.2024.10932922

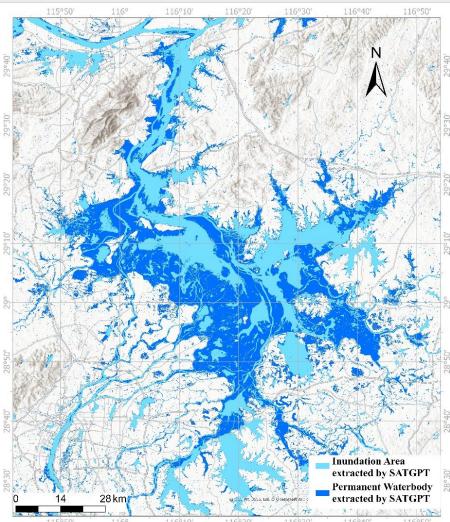



▲ Mapping inundation hotspots around **Laguna Lake (2010–2020)** with SatGPT **helps inform spatial planning and infrastructure development.**

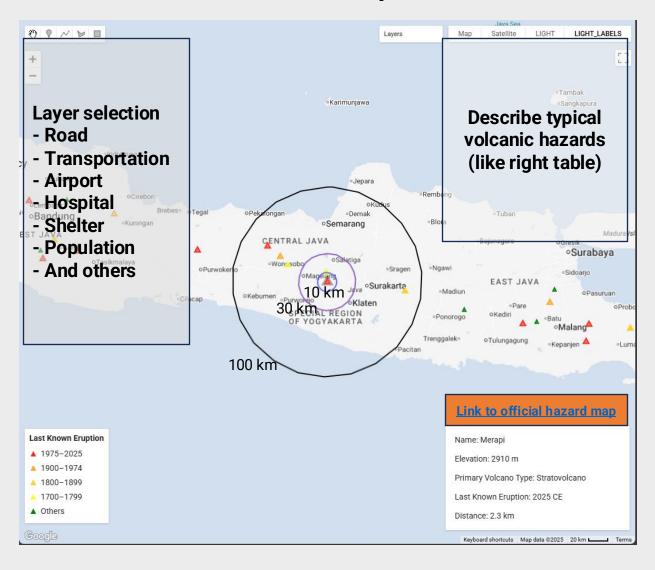

Effect of Flooding in Land Use and Land Cover: Laguna Lake, Philippines and Tonga

SatGPT Case Studies





▲ Using the inundation hotspot generated by SatGPT, the impact of heavy rainfall events in poorly drained lowland and urban areas can be determined.


The potential of SatGPT as a rapid flood mapping tool was also tested in Poyang Lake, the largest freshwater lake in China, during the 2020 flooding. Comparison with satellitederived flood data using Sentinel-1 showed that SatGPT was able to capture about 80 % of the flooding.

2020 Flood in Poyang Lake, China

Seize the opportunities GeoAl: Use Cases for Disaster Risk Reduction

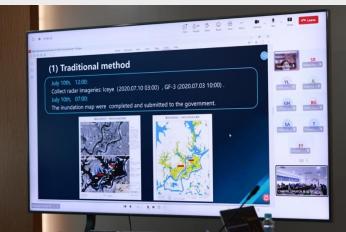
"Active Volcano near me" Map

- Provide accessible information on nearby active or potentially active volcanoes and related hazards
- Enter a place name to find nearby volcanoes (~50 km); click a symbol to recenter, draw 5/10/30/50 km rings, and open a pop-up describing volcanic info
- Provides a plain-language hazard summary by GenAI

Typical volcanic hazards	
~5 km	 Volcanic ballistics and Base surges (causing instant death) Lava flows
~10 km	Pyroclastic density currentsAsh fall deposits (heavy)Lahars, LandslidesToxic gases
~30 km	Ash fall deposits (moderate)Lahars (within the valley)
~100 km	 Lahars (flowing alongside rivers) Ash flow deposits (1 - 10 cm) Tsunamis (if submarine)

Note: This table shows typical footprints; real events can differ substantially depending on eruption size and local factors

Collaborations



Building institutional capacity to use artificial intelligence and spatiotemporal data for flood impact analysis: thematic training workshop and youth forum

Geoinformatics Center, Asian Institute of Technology (AIT), Bangkok, Thailand $6-8\,{\rm May}\,2025$

Map hotspots across range of disasters

Develop SatGPT for forest fires, coastal ecosystem monitoring (mangroves, sea level rise), crop, and urban areas

Training and Validation

Conduct training and country-level validation on Al applications in geospatial analytics, with a specific emphasis on SatGPT

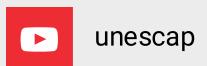
Partnerships and Collaborations

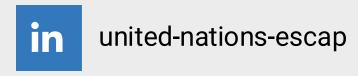
Strengthen partnerships in UN system, interested research entities, policy think tanks with objective of enabling integration of Al solutions, particularly SatGPT, into existing systems for disaster risk management and resource monitoring

Engage the Youth

Inspire youth through knowledge exchanges to promote the independent usage of SatGPT

THANK YOU


Follow us:



unitednationsescap

