

Bai Lei, Zhang Wenlong

Researcher, Shanghai Artificial Intelligence Laboratory

Significance

Monitoring, Predicting, and Understanding the Earth System is the foundation of our world's daily operation, and the key for improving our ability to respond to extreme weather events, and building a more sustainable and resilient future.

Energy

Agriculture

Aircraft

Urban

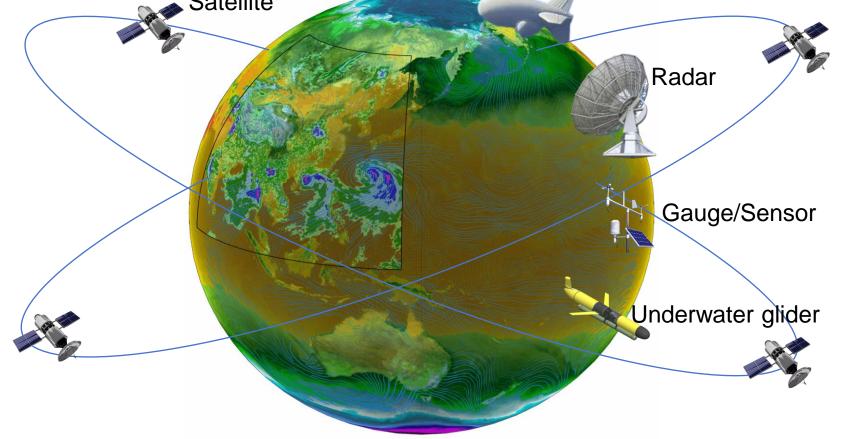
Diaster Preventing

Seafaring

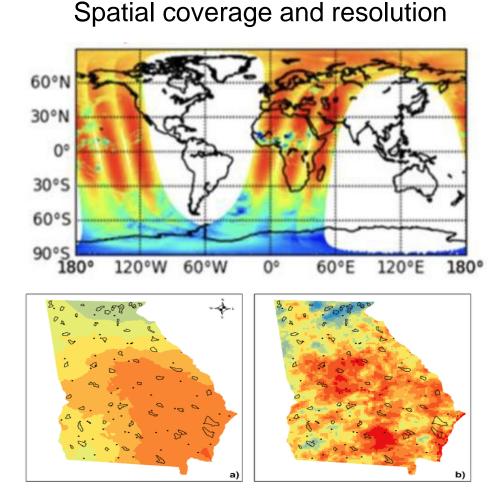
Earth Observations

- Earth observation systems provide diverse data for weather monitoring, prediction, and understanding.
- Common observation equipment includes weather satellites, radar, and observation stations, among others.
 Satellite

UN GEONOW 2024 首届联合国地信周

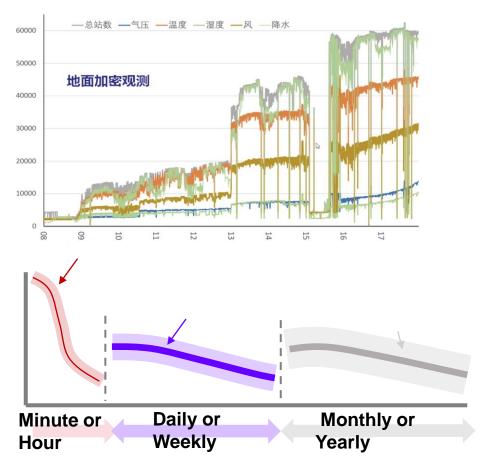


Chanllenge: Different Earth observation equipment generates data with varying spatiotemporal resolutions and coverage areas.

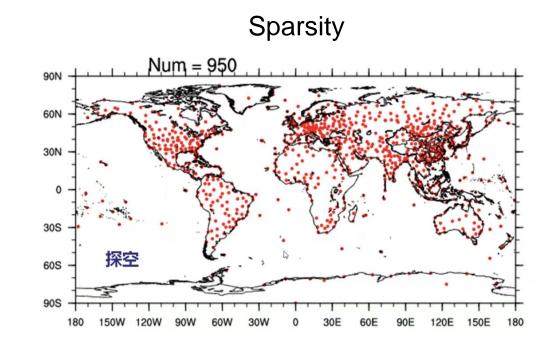


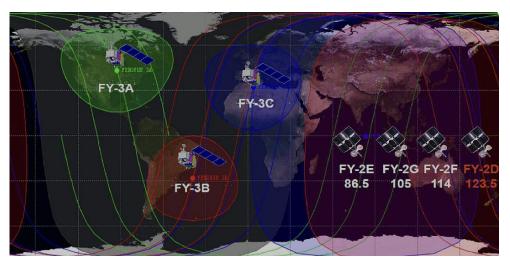
Temporal coverage and resolution

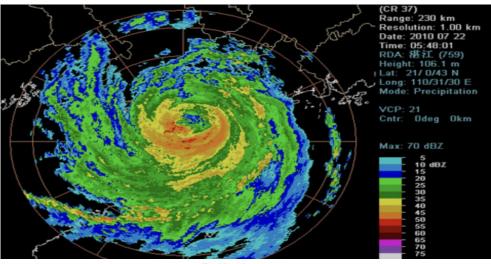
UN GEONOW 2024 首届联合国地信周



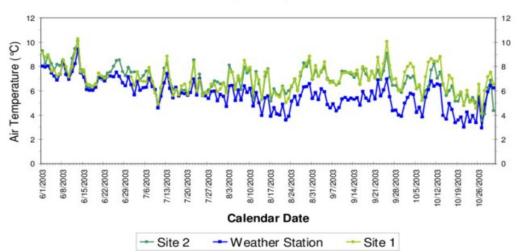
Data Characters and Chanllenges





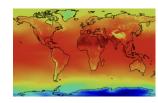


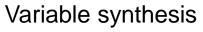
Daily Averages

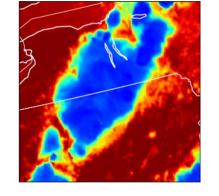


Earth Monitoring and Forecasting

Super-resolution (Downscaling)

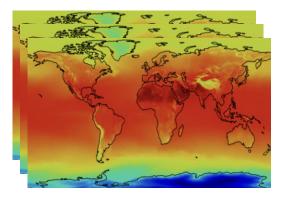


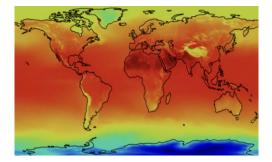


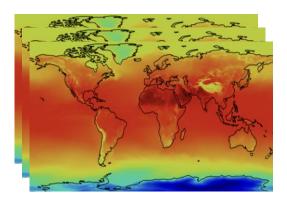


Post-processing

Prediction



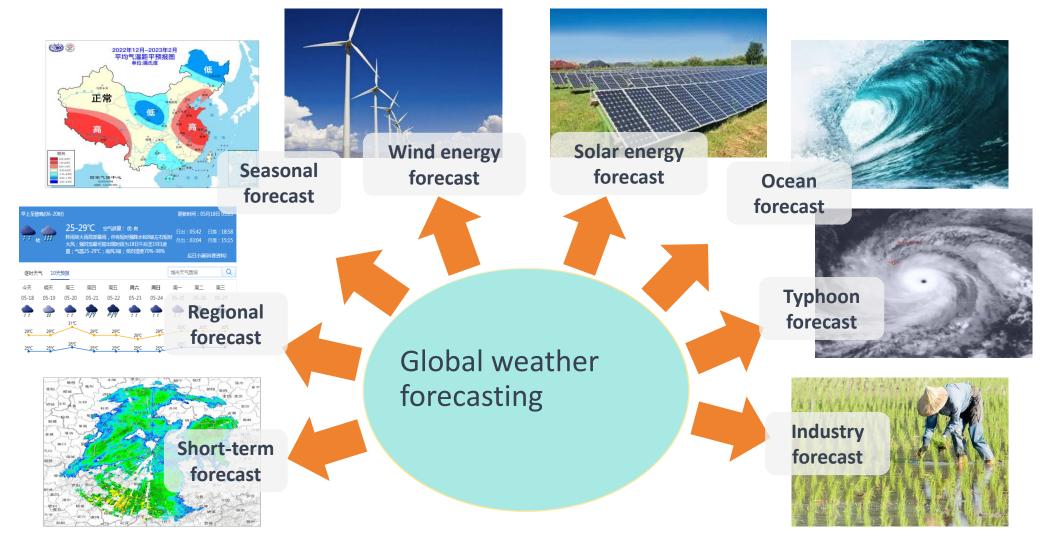




Case Studies with Weather

□ Build AI-powered foundation model for global weather and climate forecasting

UN GEONOW 2024 首届联合国地信周



From ECMWF

ECMWF's ML Strategy: with a very busy and FAST evolving landscape

Jan 2021 Machine Learning 2018 ECMWF's ML scientific		Oct 2022 1km² global	E>	Dec 2022 tensive predictior		Apr 2023 7-day+ scores improve
publication	Feb 2022 Full medium-range NV	WP	Nov 2022 Tropical cyclones	G	Jan 2023 obal & Limited A	\rea
ECMWF'S Peter Dueben and Peter Bauer publish a paper on using ERA5 at ~500km resolution to predict future z500.	ly FourCastNet	Jua.ai 1x1km global 48 hours lead time 5 minute timesteps	Huawei – PanguWeather 0.25° hourly product "More accurate tracks" than the IFS.	Deepmind – GraphCast 0.25° 6-hour product Predicts many variables and pressure levels with comparable skill to IFS.	Microsoft – ClimaX Forecasting various lead- times at various resolutions, both globally and regionally	FengWu – China academia + Shanghai Meteorological Bureau 0.25° 6-hour product Improves on GraphCast for longer leadtimes (still deterministic)

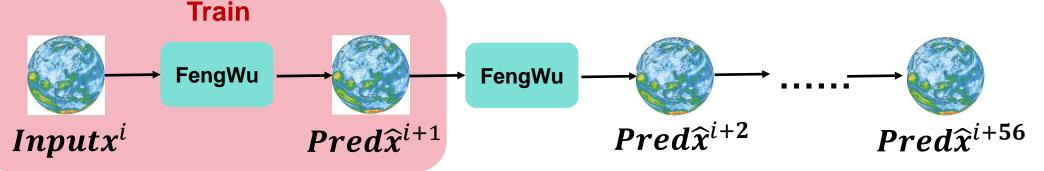
FengWu-v1: Task Definition

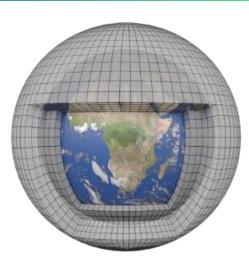
□ Problem: Predicting future global atmospheric conditions up to fourteen days

- Resolution: 0.25 (720*1440) / 0.09
- □ Region: **Global**
- Height level: 37 / 13 levels
- Atmosphere variables: geopotential, temperature, humidity, u component of wind, v component of wind

□ Modeling:

- Like physical model, the goal of FengWu is to predict the atmospheric variables at the next moment, and then all predictions are obtained by autoregressive method
- □ Spatiotemporal extrapolation



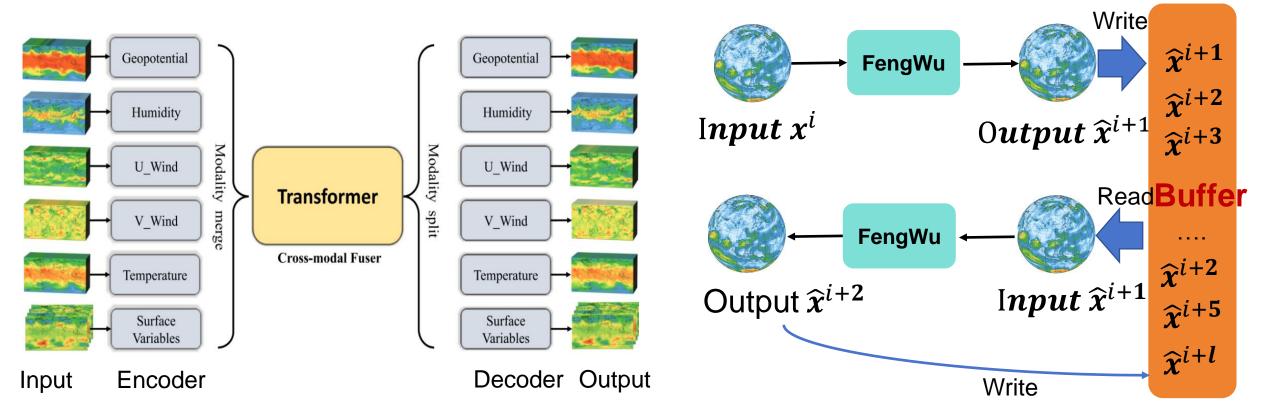


UNGEONOW 2024 首 民 联 合 国 地 信 国

FengWu-v1: Models

Designs

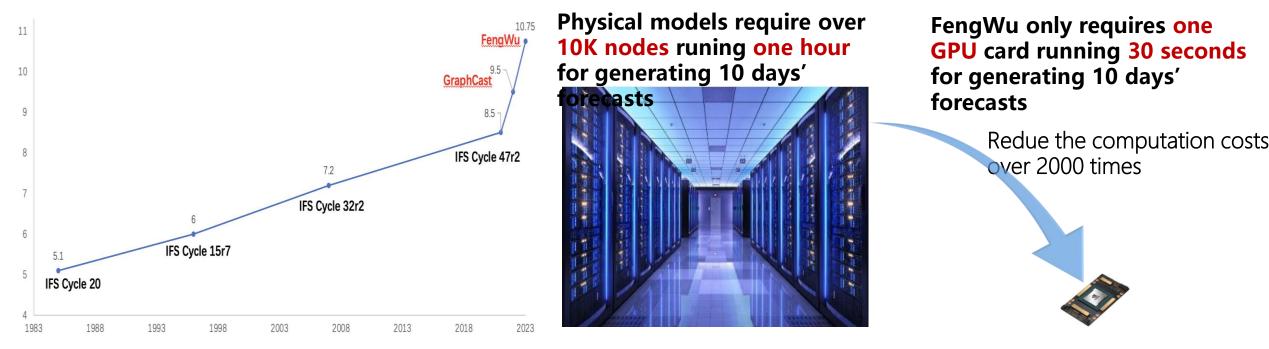
- □ Multi-modal network for efficient high-dimensional data representation
- Multi-task loss for efficient model training
- □ Replay buffer mechanism for long-lead forecasting



FengWu-v1

- □ Long lead skillful forecasting
 - ☐ from 8.5 days to 10.75 days from Z500, and 14 days for t2m
 - Fast development
- Efficiency: Generating the predictions for the next 10 days of all regions in the world with 1 GPU cards with 30 seconds

UN GEONOW 2024 首届联合国地信周

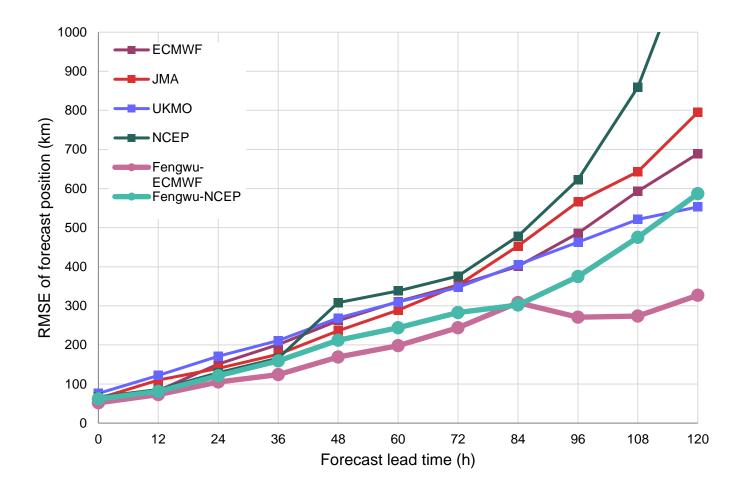


The model has been deployed in National Meteorological Center of CMA and Hongkong Observation

FengWu-v1

Performance of FengWu on Tropical Cyclone Track

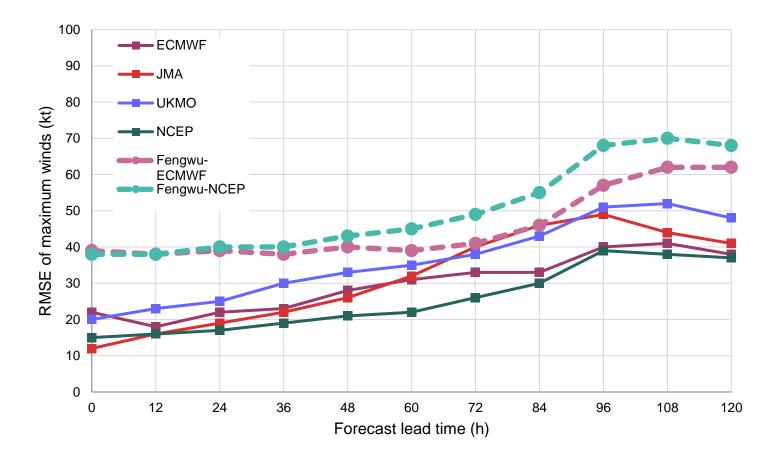
- Verification of TC tracks since Sep 2023 (larger sample size), including
- Saola 蘇拉
- Haikui 海葵
- Kirogi 鴻雁
- Yun-yeung 鴛鴦
- 2324 nameless
- Koinu 小犬
- Bolaven 布拉萬



FengWu-v1

Performance of FengWu on Tropical Cyclone Intensity

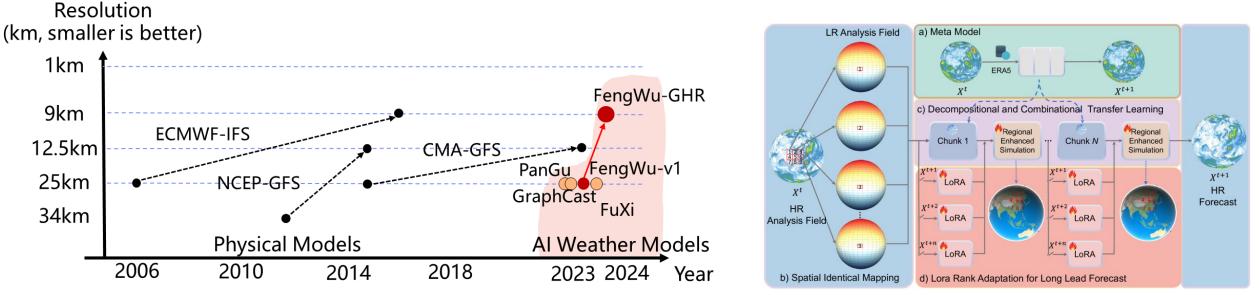
- Verification of TC intensity since Sep 2023, including
- Saola 蘇拉
- Haikui 海葵
- Kirogi 鴻雁
- Yun-yeung 鴛鴦
- 2324 nameless
- Koinu 小犬
- Bolaven 布拉萬
- Similar to other AI models, Fengwu forecast the tropical cyclones persistently too weak.



FengWu-GHR

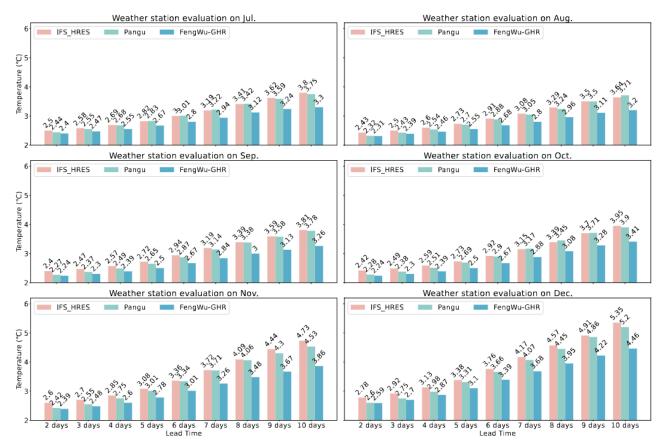
UNGEONOW 2024

Propose the Decompositional and Combinational Transfer Learning, which opens the door for learning higher resolution weather models with limited data and computational resources by utilizing lower resolution data (e.g., ERA5) for pretraining and higher resolution data (operational analysis data from ECMWF) for fine-tuning.



Han, T., et al. (2024) FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather Forecasting. arXiv:2402.00059 DOI: 10.48550/arXiv.2402.00059

FengWu-GHR

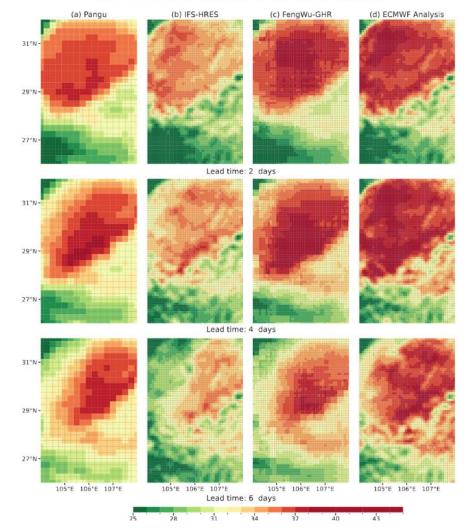


□ Evaluations with 18150 stations from NCEI

We conducted evaluations on 18 thousands staions from NCEI and evaluate the model from July to December of 2022. This evalution further confirm that FengWu-GHR significantly improves the prediction performances at all lead times.

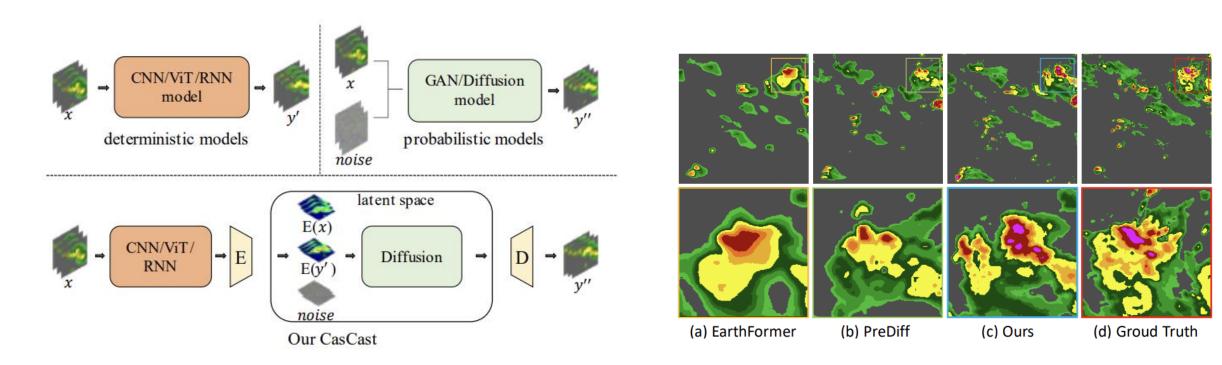
□ Heat waves happened in the summer of 2022 in Chongqing

Initialize from 2022-07-07T12:00:00 (UTC), 2 meter temperature



Challenges: Deterministic methods (e.g., Earthformer) can model meso-scale systems but **lack** of fine-grained details. Generative methods (e.g., PreDiff) can capture small-scale phenomena but face challenges in accurately predicting large-scale distributions.

Core idea: decompose the weather dynamics into meso-scale and small-scale systems, and generate them with deterministic models and latent diffusion transformers separately.



FengWu-Cascast for Precipitation Nowcasting

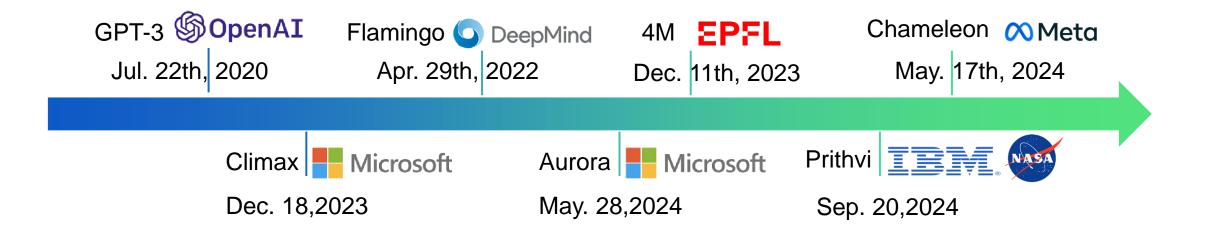
Comprehensive experiments are conducted on three large scale datasets and demonstrate the superity of the proposed scheme. (The model is now runing at Shanghai Meteorological Bureau)

model		CRPS↓	SSIM↑	HSS↑		CSI-M↑		CSI-181↑				CSI-219↑			
			55111	1155	POOL1	POOL4	POOL16	POOL1	POOL4	POOL16	POOL1	POOL4	POOL16		
ConvLSTM (Shi et al., 2015) 0.			0.0264	0.7749	0.5232	0.4102	0.4163	0.4475	0.2453	0.2525	0.2977	0.1322	0.1380	0.1734	
			0.5192	0.4045	0.4161	0.4623	0.2416	0.2567	0.3214	0.1331	0.1447	0.1909			
PhyDNet (Gue	n & Thom	e, 2020)	0.0253	0.7649	0.5311	0.4198	0.4226	0.4410	0.2526	0.2532	0.2782	0.1362	0.1359	0.1526	
SimVP (Gao et	al., 2022b)	0.0259	0.7772	0.5280	0.4153	0.4226	0.4530	0.2532	0.2604	0.3000	0.1338	0.1394	0.1685	
$EarthFormer^{\dagger}$	EarthFormer [†] (Gao et al., 2022a) 0.0251 0.7756			0.5411	0.4310	0.4319	0.4351	0.2622	0.2542	0.2562	0.1448	0.1409	0.1481		
NowcastNet (Z	NowcastNet (Zhang et al., 2023) 0.0283 0.5696			0.5365	0.4152	0.4452	0.5024	0.2495	0.2935	0.3725	0.1422	0.1874	0.2700		
LDM^{\star} (Rombac	LDM^{\star} (Rombach et al., 2022) 0.0208 0.7495		0.4386	0.3465	0.3442	0.3520	0.1470	0.1391	0.1432	0.0671	0.0655	0.0717			
$PreDiff^{\star}$ (Gao et al., 2023) 0.0202 0.76		0.7648	0.4914	0.3875	0.3918	0.4157	0.2076	0.2069	0.2264	0.1032	0.1051	0.1213			
CasCast(ours) 0.0			0.0202	0.7797	0.5602	0.4401	0.4640	0.5225	0.2879	0.3179	0.3900	0.1851	0.2127	0.2841	
-				HKO-7				MeteoNet							
model	CRPS↓		CSI-M↑			CSI-185	1	CRPS↓		CSI-M↑			CSI-47↑		
	CKI 54	POOL1	POOL4	POOL16	POOL	1 POOL4	POOL1	6 CKI 54	POOL1	POOL4	POOL16	POOL1	POOL4	POOL16	
ConvLSTM	0.0257	0.4000	0.4084	0.4280	0.1569	9 0.1843	0.2472	0.0218	0.3008	0.3050	0.3465	0.0982	0.1091	0.1588	
PredRNN	0.0252	0.3996	0.4146	0.4398	0.1633	0.1981	0.2634	0.0214	0.2914	0.3003	0.3402	0.0823	0.0990	0.1462	
PhyDNet	0.0245	0.4213	0.4121	0.3846	0.1807	0.1768	0.1913	0.0216	0.3120	0.3124	0.3356	0.1106	0.1157	0.1482	
SimVP	0.0248	0.4236	0.4195	0.4134	0.188	0.1953	0.2233	0.0218	0.3017	0.3143	0.3577	0.0997	0.1134	0.1599	
EarthFormer	0.0251	0.4096	0.4003	0.3950	0.1729	9 0.1731	0.1935	0.0224	0.2831	0.2855	0.3154	0.0787	0.0872	0.1208	
Now castNet	0.0296	0.4234	0.4518	0.4724	0.2025		0.3601		0.2955	0.3232	0.3734	0.1236	0.1521	0.2115	
LDM^{\star}	0.0260	0.3045	0.2738	0.2764	0.0517		0.0928			0.2191	0.2369	0.0359	0.0407	0.0552	
$PreDiff^{\star}$	0.0244	0.3221	0.3152	0.3046	0.0788		0.1113		0.2546	0.2668	0.2935	0.0490	0.0594	0.0867	
CasCast(ours)	0.0205	0.4267	0.4608	0.4938	0.2158	3 0.2772	0.3653	0.0180	0.3156	0.3650	0.4420	0.1204	0.1563	0.2357	

<u>Modeling Earth weather systems involves a series of complex subprocesses</u> that are intended to transform intricate Earth observation data into applications like weather forecasting, downscaling, assimilation, re-trieval, and bias correction.

Significant trend in Al research is the development of foundation models, shifting towards largescale pre-training and in-context learning.

This poses a **challenge**: *Is it possible to design a universal foundation model capable of handling the variety of* <u>complex weather understanding tasks and data modalities?</u>

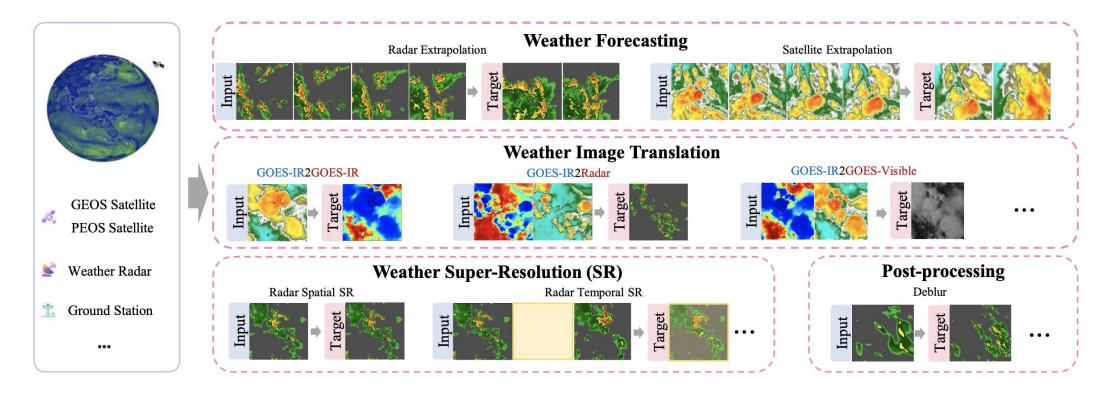


Challenges:

- Designing a new specific model for a single-task scenario is time-consuming, and labor-intensive.
- Weather understanding tasks face an intrinsic bottleneck in data scale due to restrictions on individual scenes and single observation devices

Category	Method	Method Data Acquisition Supported Tasks Difficulty		Multi-tasks support?	Multi-modal support?	Generalist support?	
	HAT (Chen et al., 2023d)	Low-cost	Image super-resolution (SR)	×	×	×	
	IPT (Chen et al., 2021)	Low-cost	Image restoration, Derain, Dehaze	1	×	Requires fine-tuning	
Computer	Painter (Wang et al., 2023a)	Low-cost	Image restoration	1	×	1	
Vision	Tainter (wang et al., 2025a)	Low-cost	Segmentation, Keypoint detection	v	C C	v	
	PromptGIP (Liu et al., 2023a)	Low-cost	Image restoration, Derain, Dehaze	1	×	1	
	GenLV (Chen et al., 2024a)	Low-cost	Image restoration, enhancement, translation	1	×	1	
	Prediff (Gao et al., 2024)	High-cost	Weather forecasting	×	X	×	
	Cascast (Gong et al., 2024)	High-cost	Post-processing	×	×	×	
Forth	Climax (Nguyen et al., 2023)	High-cost	Weather forecasting, Super-resolution	1	×	Requires fine-tuning	
Earth Science A	Aurora (Bodnar et al., 2024)	High-cost	Weather forecasting	×	1	Requires fine-tuning	
		ingh cost	Atmospheric chemistry prediction		·	requires into-tuiling	
	WeatherGFM	High-cost	Weather forecasting, Weather image SR	1	1	1	
	(ours)	ingn cost	Weather image translation, Post-processing	•	•	•	

Weather understanding tasks involve processing **multi-source observational data**, such as geostationary satellites (GEOS), polar-orbiting satellites (POES), weather radars, and ground observation stations. Each task (e.g., weather forecasting, spatial and temporal super-resolution, weather image translation, and post-processing) utilizes **different types of input and output data**.



How to unify these tasks and data modalities into a general foundation model?

Prompt learning

Vision and language prompt designing

Task prompts commonly provide specific task-related input-output pairs.

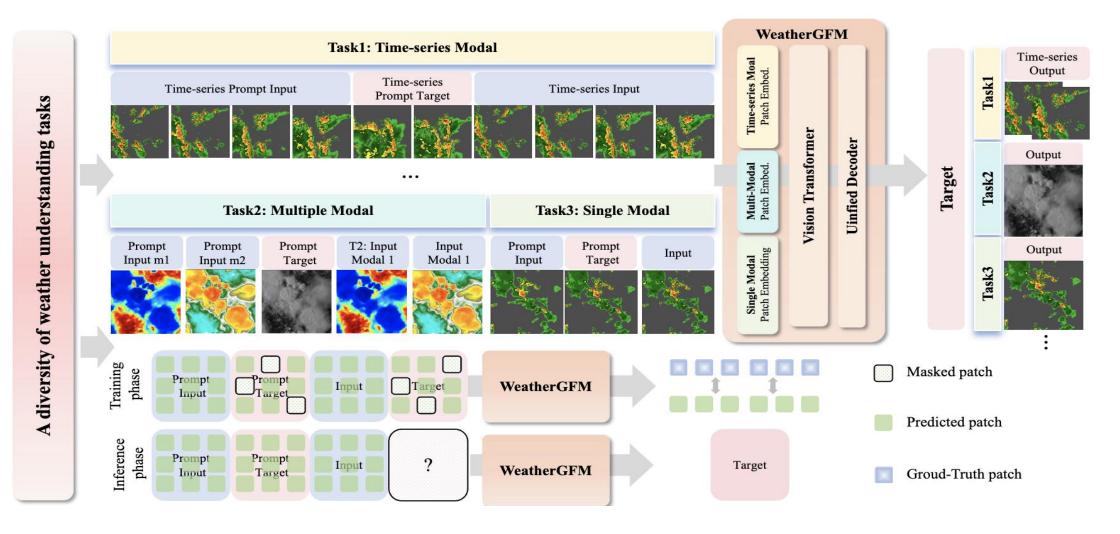
Weather prompt designing

we proposed three prompts to handle different modalities of input. Support single variable (super-resolution), multiple variables (e.g., image translation), and time-series variables(e.g., weather forecasting).

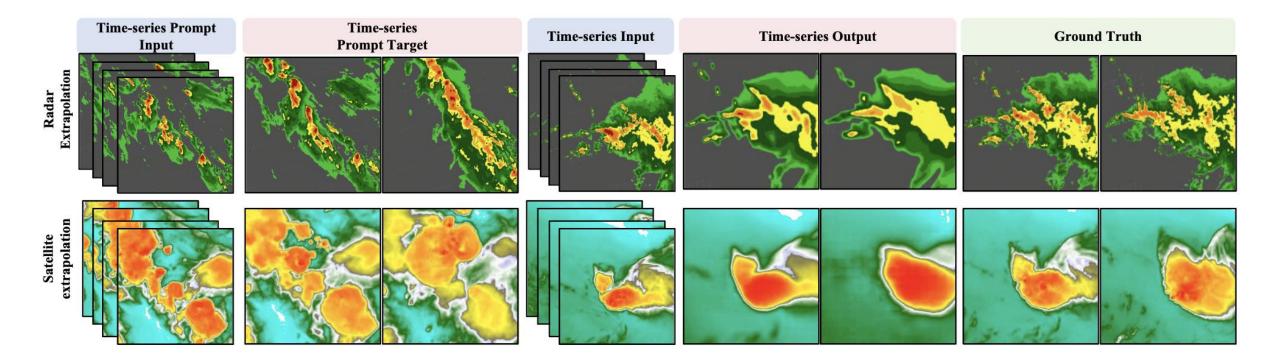
Text Prompt: {example: sea otter, loutre de merr}	query: cheese	output: fromage
Visual Prompt: {example: image1, image2}	query: image3	output: image4

Weather Prompts									
Weather Prompt1: {example: image1, image2}	query: image3	output: image4							
Weather Prompt2: {example: image1, image2, image3}	query: image4, image5	output: image6							
Weather Prompt3: {example: sequence1, sequence2}	query: sequence3	output: sequence4							

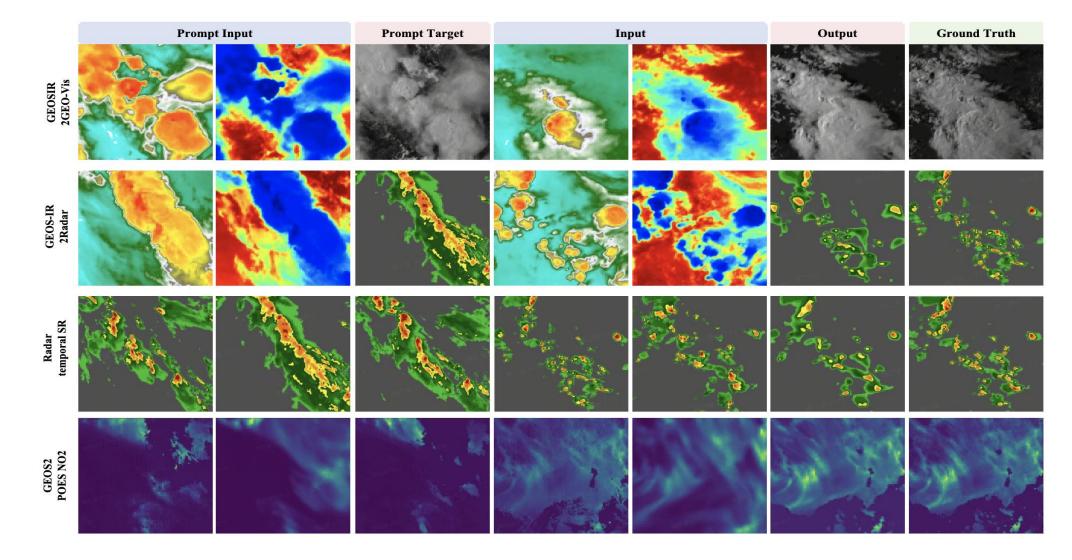
Weather in-context learning: Unify the weather understanding problem as the visual prompting questionanswer paradigm by *mask modeling*.



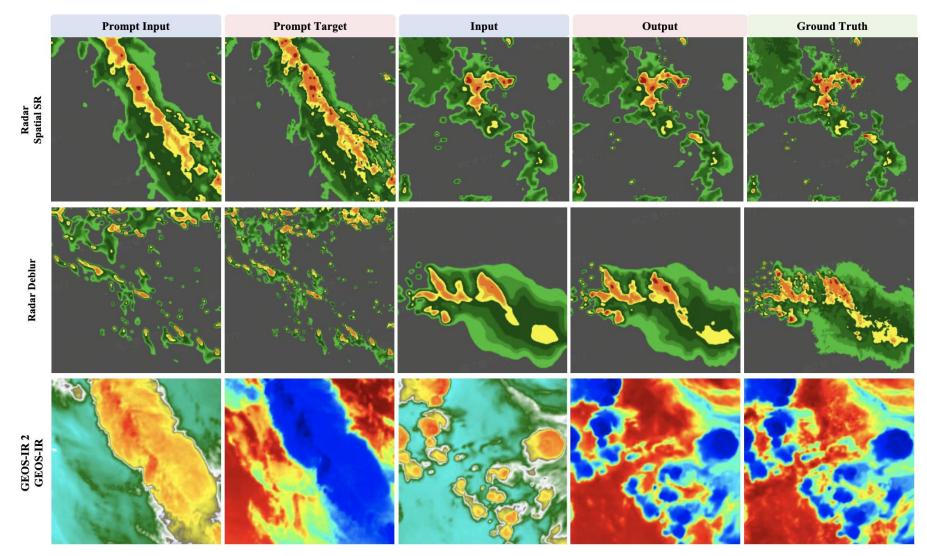
Time-series modal Weather Generalist foundation model can achieve strong universal capabilities



Multi-modal Weather Generalist foundation model can achieve strong universal capabilities



Single modal Weather Generalist foundation model can achieve strong universal capabilities



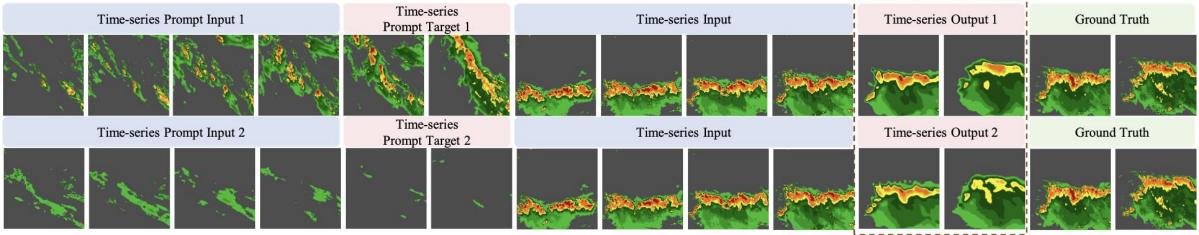
Weather Generalist foundation model outperforms the performance of the single-task model.

UNGEONOW 2024 首届联合国地信周

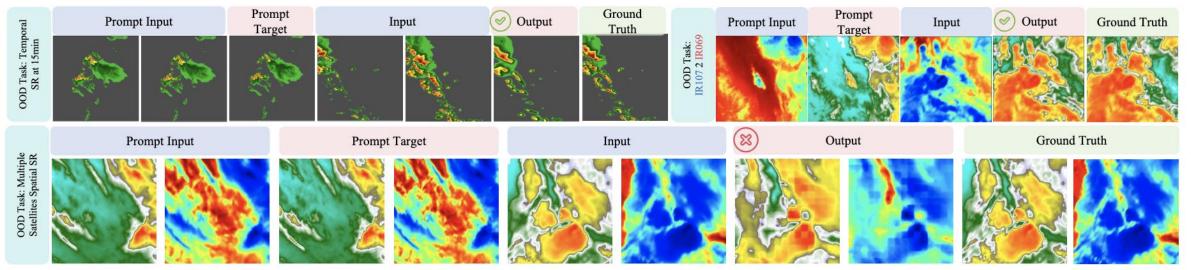
Task name Metrics					Weather	super-resoluti	on (SR)					
	Satellite Spatial SR			Radar Temporal SR				Radar Spatial SR				
	RMSE	CSI/-4000	CSI/-6000	RMSE	CSI/74	CSI/160	CSI/219	RMSE	CSI/74	CSI/160	CSI/219	
UNet [#]	0.932	0.650	0.912	0.739	0.485	0.182	0.034	0.650	0.675	0.400	0.184	
ViT [#]	0.047	0.987	0.990	0.333	0.591	0.285	0.061	0.120	0.830	0.637	0.358	
WeatherGFM †	0.042	0.988	0.996	0.327	0.597	0.287	0.073	0.121	0.831	0.644	0.375	
			We	ather Forecas	ting				Post-proc	essing		
Task name Satellite extrapolation				Radar extrapolation				Deblur				
Metrics	RMSE	CSI/-4000	CSI/-6000	RMSE	CSI/74	CSI/160	CSI/219	RMSE	CSI/74	CSI/160	CSI/219	
UNet [#]	1.033	0.617	0.900	0.815	0.353	0.082	0.007	0.713	0.457	0.145	0.027	
ViT [#]	0.408	0.840	0.943	0.490	0.440	0.079	0.007	0.163	0.594	0.291	0.104	
WeatherGFM †	0.347	0.863	0.951	0.467	0.465	0.128	0.021	0.244	0.607	0.243	0.074	
					Weath	er image trans	lation					
Task name			GOES	2Radar				GOES-IR2GOES-IR				
Metrics	RMSE	CSI/16	CSI/74	CSI/160	CSI/181	CSI/219	RMSE	CSI/-6000	CSI/-4000	CSI/0	CSI/2000	
UNet [#]	0.821	0.222	0.370	0.180	0.153	0.079	0.915	0.929	0.741	0.638	0.078	
ViT [#]	0.445	0.602	0.436	0.180	0.131	0.042	0.257	0.987	0.972	0.809	0.136	
WeatherGFM †	0.436	0.619	0.447	0.208	0.157	0.053	<u>0.310</u>	0.993	0.968	0.808	0.222	
Task name	GOES-IR2GOES-Visible							GOES2POES-NO2				
Metrics	RMSE	CSI/2000	CSI/3200	CSI/4400	CSI/5600	CSI/6800	RMSE	CSI/1	CSI/5	CSI/10	CSI/15	
UNet [#]	0.915	0.422	0.285	0.179	0.100	0.040	0.866	0.799	0.360	0.274	0.202	
ViT [#]	0.448	0.574	0.437	0.303	0.184	0.071	0.549	0.841	0.432	0.328	0.253	
WeatherGFM [†]	0.858	0.386	0.272	0.168	0.081	0.027	0.302	0.682	0.562	0.382	0.197	

Fengwu-GFM: Generalist Foundation Model

Our method can **comprehend specific weather cases** based on weather prompts rather than being a black box model incapable of interactive operations.



OOD tests demonstrate the model's ability to identify tasks outside the training distribution from new prompts, showcasing a degree of **generalization**.



Generalist Model is an emerging paradigm that seamlessly integrates AI with Earth Science.

Generative models plays a key role in the whole process of earth modeling, including data processing, data fusion, forecasting, and support specific application.

We have conducted a set of works in the domain that have been proved effective through real-world deployments.

Looking forward to more discussions

