

CropWatch Cloud Empowers Developing Countries' Ability and Capacity to Explore Earth Observation for Addressing Food Security Issues

Wu Bingfang wubf@aircas.ac.cn

Outline

- Background
- CropWatch programme
- Capacity building
- Outlook

Food Security

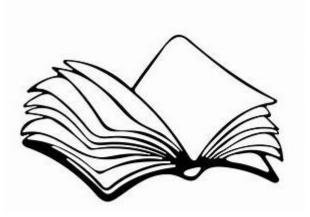
- Food security is still a challenge issue over the world, in particular in Africa, south & southeast Asia.
- Climate variability, especially extreme drought events are inducing yield depressions by more than 10%
- Pest and diseases overall impact to 10-20% of global crop harvest
- The paucity of adequate capacity in obtain and accessing up-to-date staple crop production information pose the danger of taking decisions based on delayed and on not easily verifiable information.

 Hunger Map 2020
 CHRONIC HUNGER
 If current trends continue, the number of hungry people will reach 840 million by 2030

 <2,5%</td>
 <5%</td>
 5-14,9%
 15-24,9%
 >35%
 DATABATE

Crop Monitoring is essential

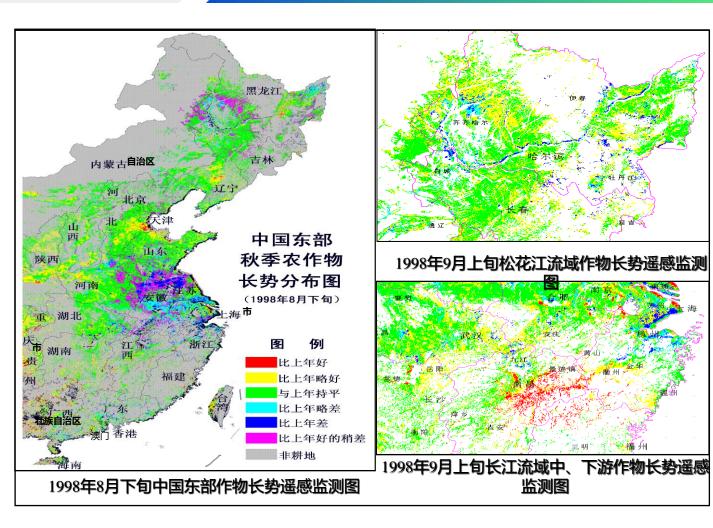
- for a country economic governance and securing food supply.
- Early production forecasts help policy makers to make evidence-based trade decisions
- In season warning (stress due to drought, pest & diseases) for better farm management
- Early warning information helps early response and actions on providing food aid to food shortage regions
- to improve food information availability and transparency
- Many countries want to develop crop monitoring system to derive near-real time crop information



UNGEONOW 2024

Outline

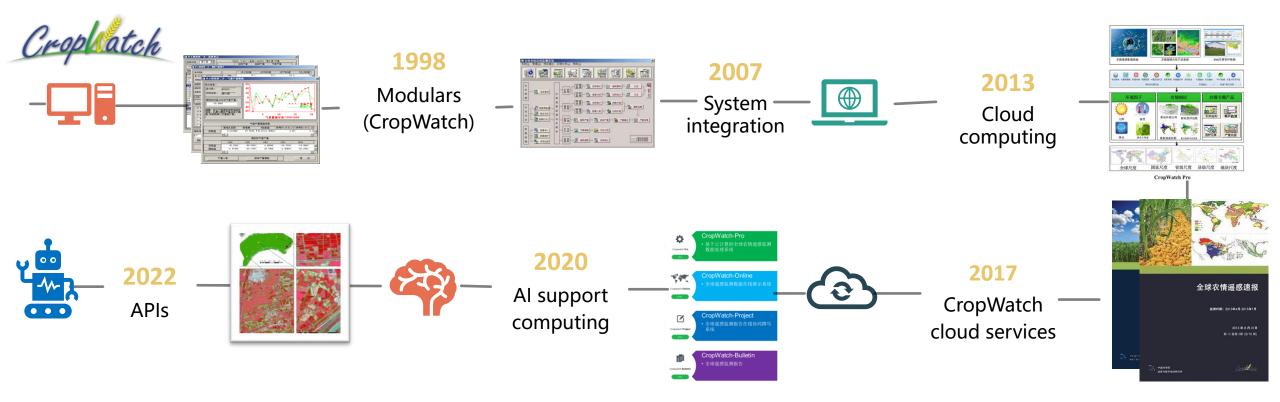
- Background
- CropWatch programme
- Capacity building
- Outlook



CropWatch Programme

- Development over 1980s -1990s
- CropWatch bulletins since 1998
 - > decade, month, quarter, annual
- Solid and accurate information
- Intensive field works and validation,
 - > 1 million field data collection annually
 - > Crop cutting on yield country wide
- Join the round table discussion
- Pressure on data modification
- Over 50 millions fundings from government

Crop condition at 1998 sever flooding period



CropWatch versions

7 Versions of CropWatch: modulars (1998), systematization (2008), cloud computing (2013), cloud services (2017), AI based computing (2020), and APIs (2022)

UNGEONOW 2024 首 民 联 会 国 地 信 国

APIs with edging computing

Extreme events

- News letter in response to drought, flood
- Extreme events: 1998 (flood), 2001 (drought), 2010 (world drought), 2020 (covid-19), 2022 (conflict)
- 2003-2004, soya bean crisis,
 - Because information from CropWatch is not used, 1.6 billion loses and many oil processing factories went to bankruptcy
- China food prices have been stable since 2004

CropWatch Cloud

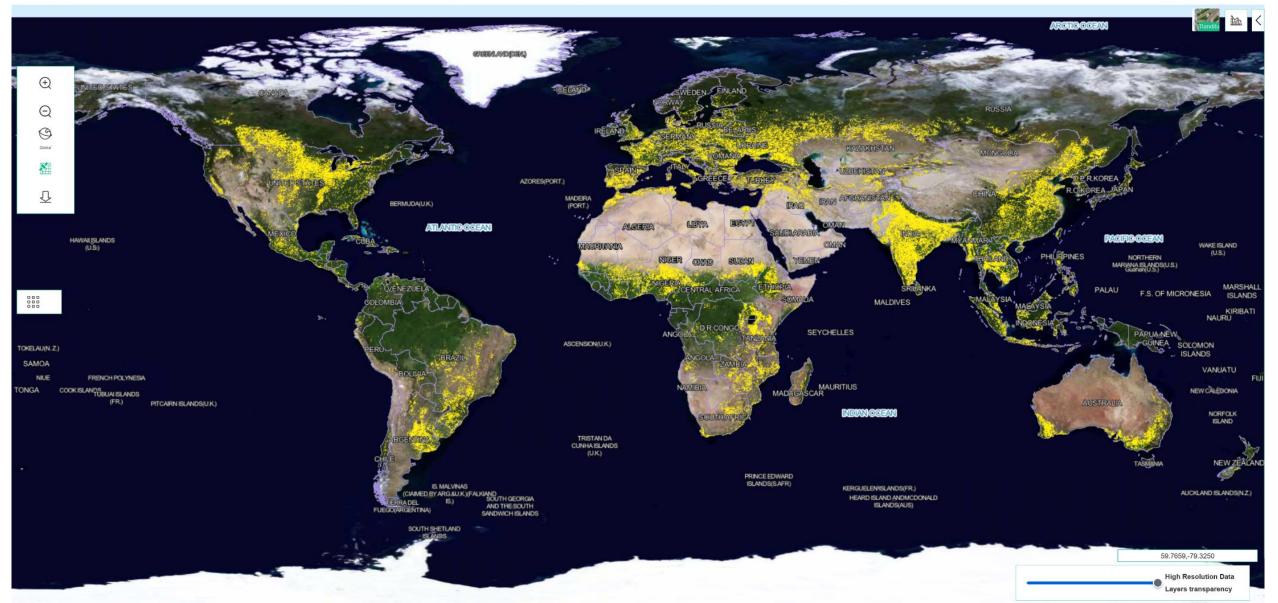
- Satellite-based hierarchical method of crop monitoring,
 - Processing, explore, analysis and bulletin
 - > 53 indicators addressing
 - agro-climatic,
 - agronomic,
 - production (area and yield),
 - extreme events and impacts,
 - early warning,
 - farming
- Release Quarterly and annually bulletins on global crop monitoring, covering 173 countries and regions down to provincial scales, with special focus on 43 key agricultural countries

UNGEONOW 2024 首届联合国地信周

Global Cropland at 30m

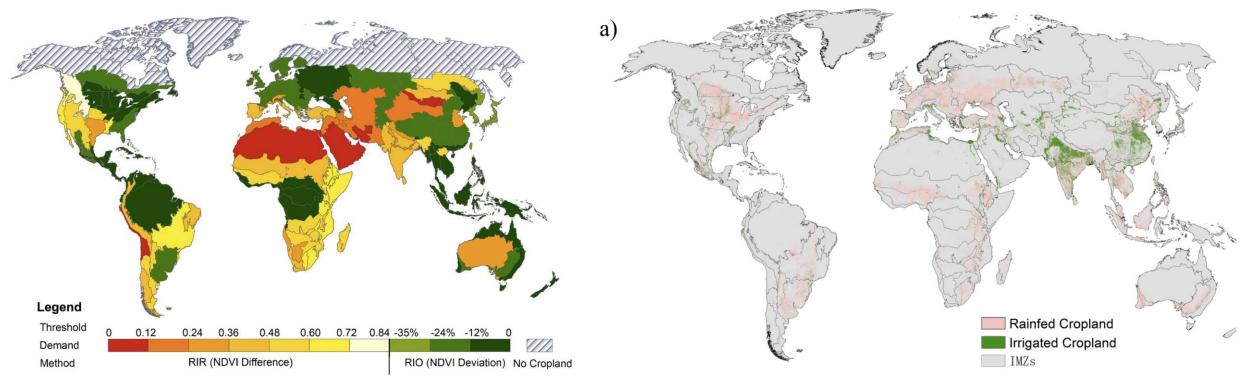
🧏 Agronomic Indicators 🛛 🔚 Production Index

🚯 Early Warning Indicators 🛛 🔯 High-resolution monitoring

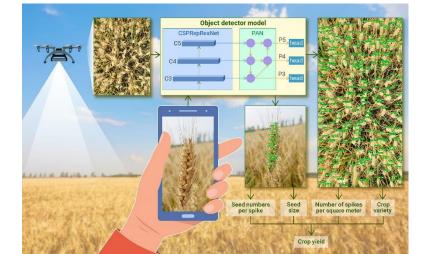

nitoring 🛛 📕 High-Resolu

High-Resolution Products

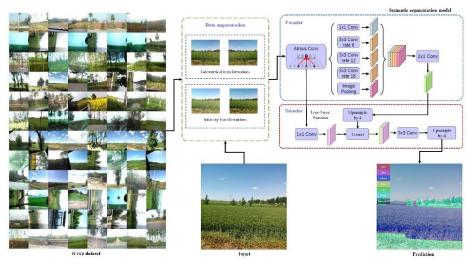
Crop Type Production Zone


🍣 Mangment System

English - zengh..

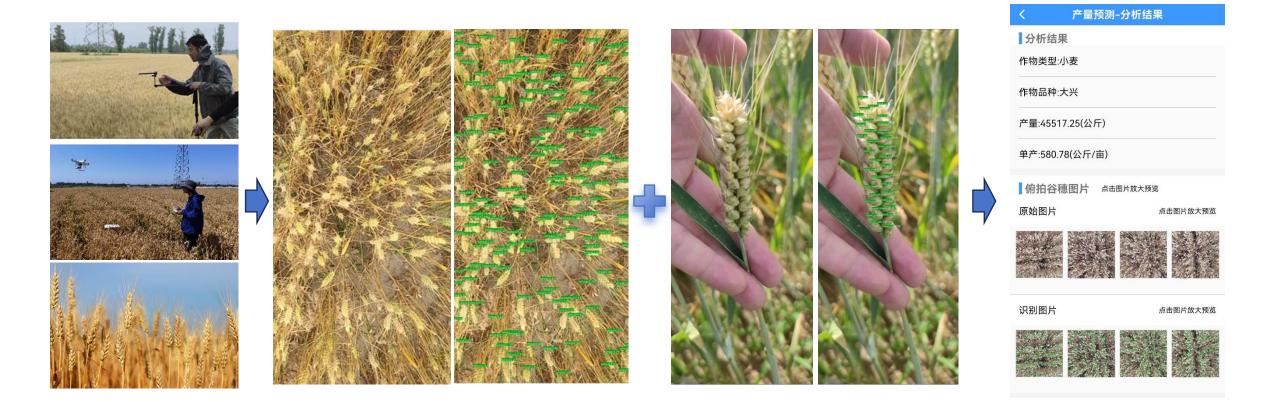

Irrigated Cropland

- UN GEONOW 2024 首届联合国地信周
- Mapping the extent of irrigation with the NDVI differences between irrigated and non-irrigated croplands under water stress;
- The irrigation area at a 30-m resolution is 23.4 % of global cropland in the period 2010–2019, with an overall accuracy of 83.6 % globally
- Separating regular and intermittent irrigation

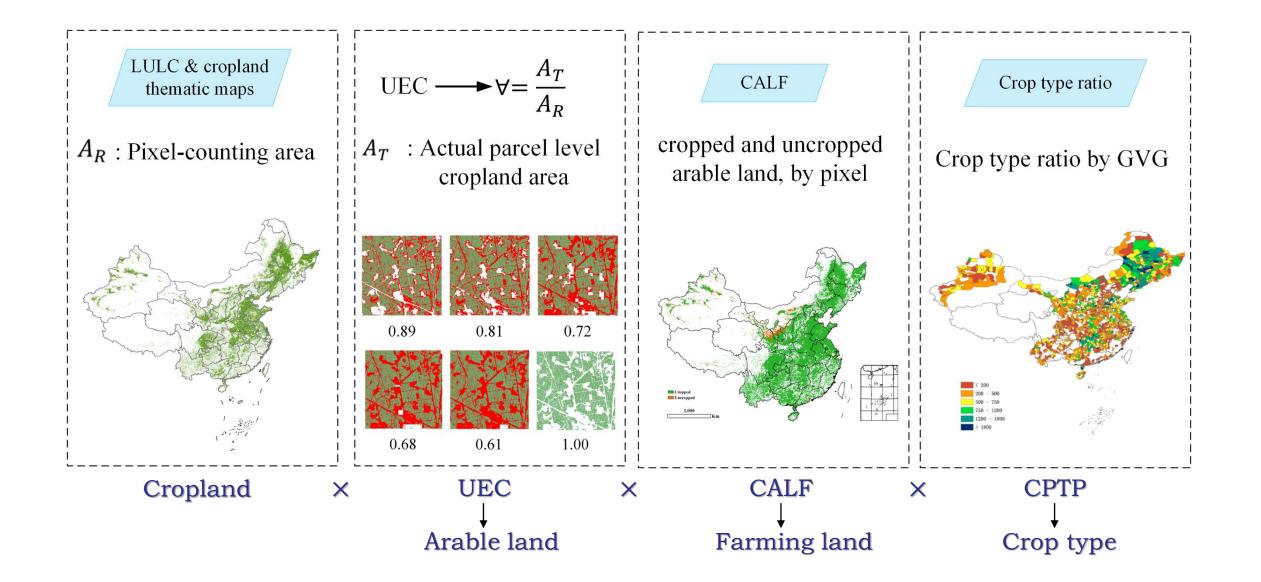


CropWatch tools

- The field data collection prevents most systems have capacity to estimate crop area and yield
 - Cost, labor and time consuming
- Two tools developed for free use
 - GVG app for crop identification
 - FieldWatch for yield measurement

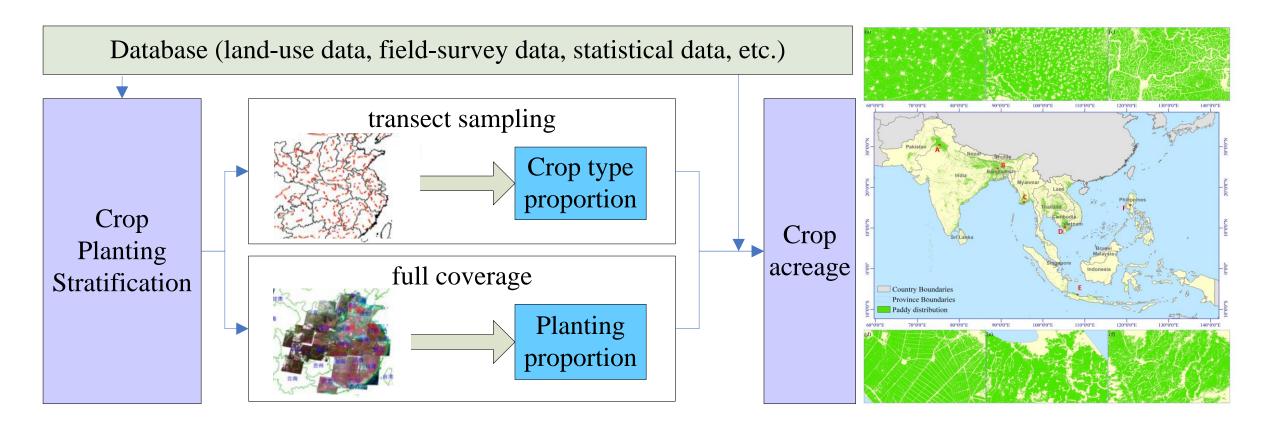

FieldWatch for yield data measurements

Yield data collection

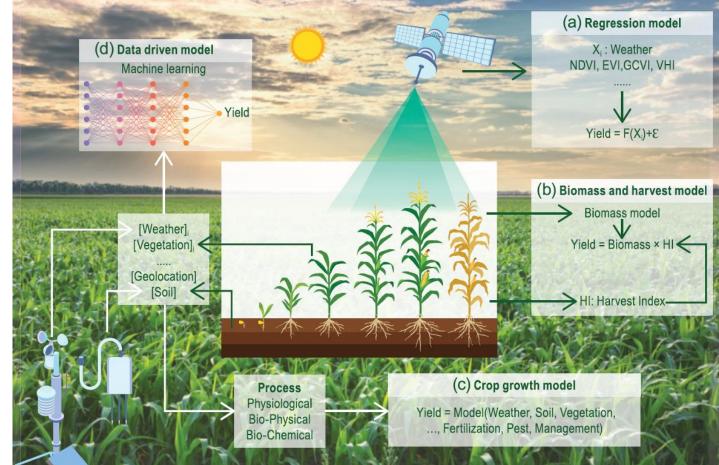

- With the support of the DL model, the number of ears/m2, and seed number per ear, size of seed are determined for crop yield estimation with accuracy of 92%
- FieldWatch supports disease identification, parcel crop condition and production

UNGEONOW 2024 首届联合国地信周

Crop type area estimation



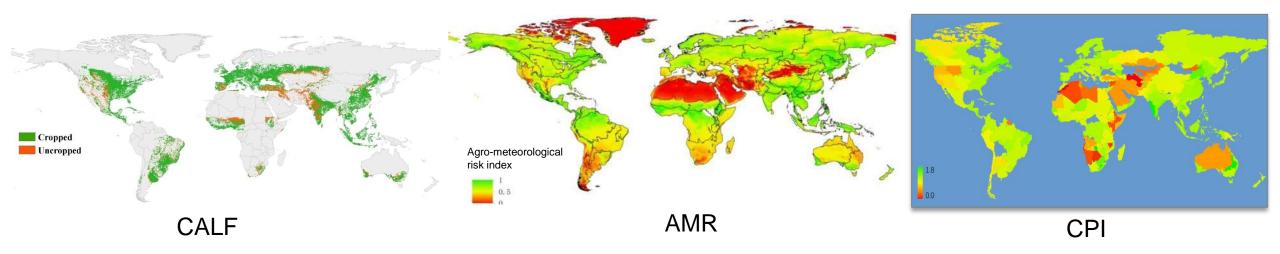
Crop Areas


- Crop area information needs field data
- CropWatch integrates crop area estimation with geo-statistics & crop mapping
 - > The CPTP method in complex agricultural landscapes (66%)
 - > Transfer learning methods are integrated to reduce the reliance on in situ data (34%)

UNGEONOW 2024

Yield models

- Yield prediction component is the weakest component in crop monitoring
 - VI saturation leads to poor performance when predicting yields, especially in dense or irrigated crop regions.
 - VIs have not precisely captured crop yield determinants, especially under extreme climatic conditions.
 - The uncertainty of current crop growth models makes it difficult to scale up to facilitate operational yield predictions.
- 4 types yield models are developed and integrated into CropWatch to reduce the uncertainty of yield prediction
 - > Agro climate
 - > VIs
 - Biomass-harvest
 - Machine learning



UN GEONOW 2024 首届联合国地信周

Early warning indicators

- Cropped arable land fraction (CALF) represents the total cropping proportion at early growing stage
- Agro-meteorological risk index (AMRI) considering meteorological suitability for crops at different growing stage
- Crop production index (CPI), integrating cropping area, condition, irrigation, intensity, productivity

Hierarchical analysis

Increasing level of detail

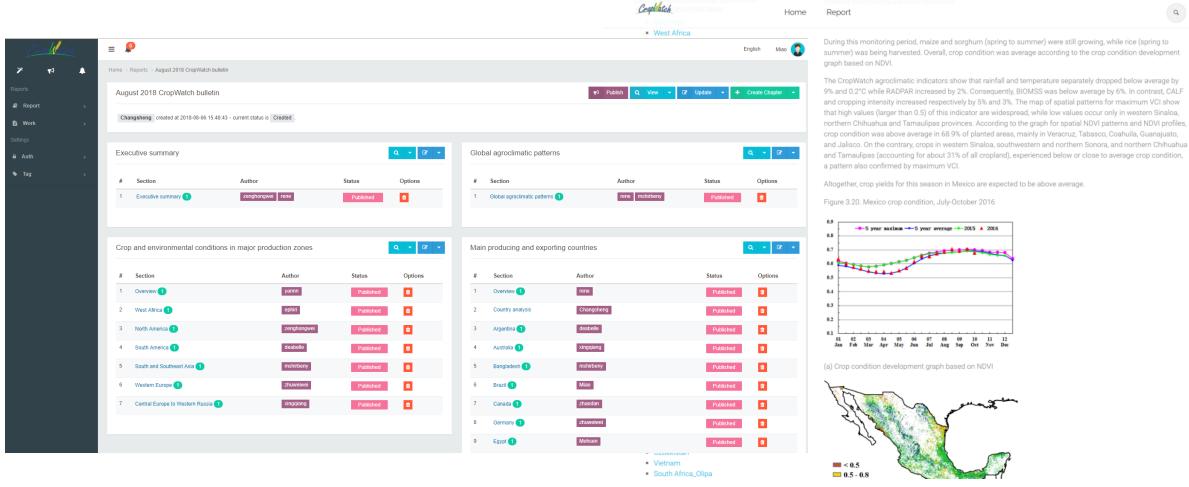
- from agro-climatic to agronomic
- from 25 km to 5m

Global: homogeneous crop mapping and reporting units Using CropWatch Agroclimatic Indicators (CWAIs) for rainfall, air temperature, photosynthetically active radiation, and potential biomass

> Regional: Major production zones In addition to CWAIS, Vegetation health index, uncropped arable land, cropping intensity, and maximum vegetation condition index

National In addition to previous indicators, crop cultivated area, time profile clustering

> Sub-national for large countries Crop type proportion (some countries)


173 countries and 110 zones

6 MPZ

47 and 225 agroecological zones

9 big countries

Collective analysis

UN GEONOW 2024 首届联合国地信用

CropWatch Bulletin

- Provide global crop report as pdf or html format in Chinese and English
- Downloaded by users from more than 170 countries, 20,000+ for each issue
- Enhancing the transparence of global crop information

Menu

COUNTRIES

Brazil

Eqypt

India Iran

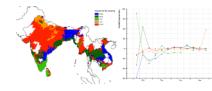
Nigeria

 Pakistan Philippines Poland

Romania

Russia

Thailand


Turkey

 Ukraine United States

the cover, table of contents, abbreviations, a short overview of the different sections of the bulletin and executive summary

Cropkatch About Update Bulletin Methodology Publications Contact Us 🏽 English Login Home » February 2019 CropWatch Bulletin FEBRUARY 2019 CROPWATCH BULLETIN All Summary cropwatch EXECUTIVE SUMMARY Executive summary South and Southeast Asia Crop and environmental conditions in major production zones GLOBAL AGROCLIMATIC PATTERNS Author: zhaoxf mshirbeny Liditor: rene · Global agroclimatic patterns CROP AND ENVIRONMENTAL CONDITIONS IN MAJOR PRODUCTION ZONES Overview West Afirica North America South America (TEMP +0.1°C, RADPAR +2%). · South and Southeast Asia Some national RADPAR values had significant positive anomalies as for instance in the Philippines (+7%) and Cambodia Western Europe Central Europe to Western (+6%). Myanmar recorded a slight negative anomaly (RADPAR -1%). Other countries recorded positive values but close to average. TEMP stayed close to average: Sri Lanka and Indonesia recorded negative departures (-0.6°C and -0.4°C Russia respectively), while Vietnam and Thailand were both slightly warmer (0.5°C) than the average. The largest anomalies occurred MAIN PRODUCING AND EXPORTING at the beginning of the reporting in central India (close to +3°C anomaly in and around Madhya Pradesh, about +2.5°C anomaly in and East of Thailand). Close to average temperature prevailed throughout the monitoring period from western Overview Myanmar across Bangladesh to most of northern India. Country analysis Argentina For RAIN, the largest anomalies were those of Nepal (-48%), Bangladesh (-38%), India (-35%) and the Philippines (-25%) as Australia well as Myanmar where excess precipitation was recorded (+22%). Most anomalies occurred at the beginning of the reporting Bangladesh Andhra Pradesh, Bangladesh and central Vietnam. Canada Germany Ethiopia Myanmar (+24%), Vietnam (+23%) and Thailand (+20%). France Low values of VHI minimum were recorded mainly in India, Cambodia, Thailand, and Myanmar. Maximum VCI appeared mainly Indonesia in India and Thailand Kazakhstar Cambodia Mexico Figure 2.4, South and Southeast Asia MPZ: Agroclimatic and agronomic indicators, October 2018 - January 2019. Myanmar

Satisfactory crop condition prevailed over the South and Southeast Asian MPZ during the monitoring period with the maximum Vegetation Condition Index (VCIx) reaching 0.86, even if the biomass production potential (BIOMSS) was 8% lower than the 5-year average. The fraction of cropped arable land (CALF) was average. Most uncropped arable land occurs in India. RAIN was well below average (-20%) but both temperature and photosynthetically active radiation were slightly above average

UNGEONOW 2024 首 民 联 会 国 地 信 周

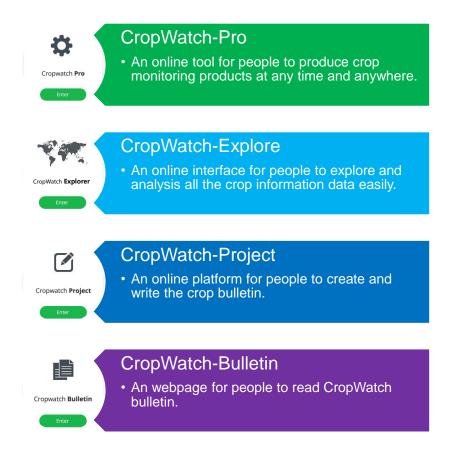
period in October, with the largest excesses in southern India, Sri Lanka and the Mekong Delta area, and deficits in coastal

As a reflection of the agro-climatic conditions during the reporting period, the biomass accumulation potential fell below the reference of the 5YA. The largest BIOMSS departures are those in India (-24%), Philippines (-18%), Bangladesh (-18%),

> Introduction

Outline

- Background
- CropWatch programme
- Capacity building
- Outlook


Crop Monitoring System

Components:

- Agro-climatic analyses,
- crop-condition and stress monitoring,
- > crop production predictions, and
- > early warning of likely food insecurities.
- > farming activities and progress
- Operational
 - Efficient and long-term services for stakeholders
 - Cost effective, timely, location specific
- Basic elements
 - Complete Data stream from raw Earth Observation (EO) data as inputs to produce targeted information.
 - Software processes that automatically convert data into valuable information.
 - > Archived product for time series analysis and comparison
 - Baseline datasets

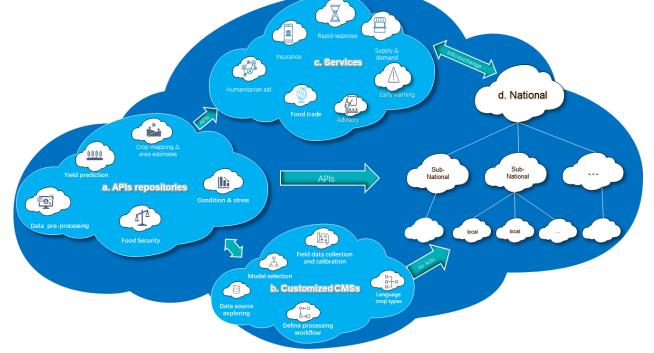
http://cloud.cropwatch.cn/

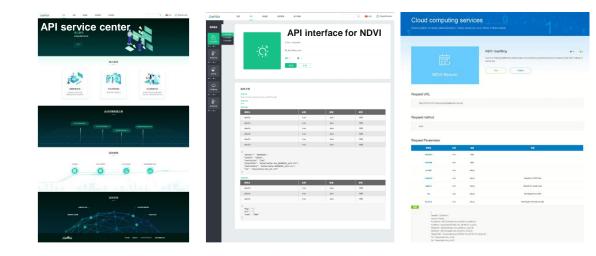
Analysis and reporting

- **UN GEONOW 2024** 首届联合国地信周
- Lack of transparent and standardized methods for synthesizing various information produced by CMSs to support decision-making
 - knowledge-based analyses are mostly applied in cropmonitoring activities, especially in the process of generating actionable reports.
 - > the personal knowledge, views or preferences of the analysts all affect their working practices.
- difficult to question these reports without direct access to the algorithm code and the underlying data used to generate such information.
- alternatively, development of their own systems or obtain information from different sources to avoid unconscious biases.

Constraints

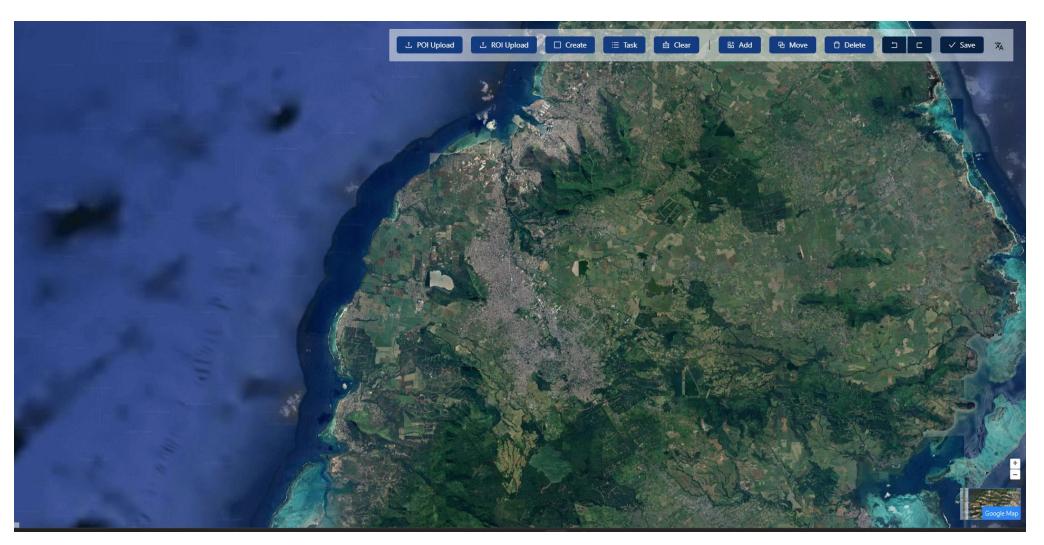
- Set up a crop monitoring system is neither easy nor inexpensive
 - Combining of crops, phenology, location makes crop monitoring data streams very complex
 - Initiative input and operational cost as well as adequate technical skills constrain developing countries to set-up, operate, and maintain crop monitoring facilities.
- Most countries in the world do not have an operational crop monitoring system
 - resulting in a reduced ability of such countries to rapidly respond to issues around food production.
 - over-dependence on information provided by third parties and often
 - poses the danger of taking decisions based on delayed and on not easily verifiable information




UNGEONOW 2024 首 届 联 合 国 地 信 国

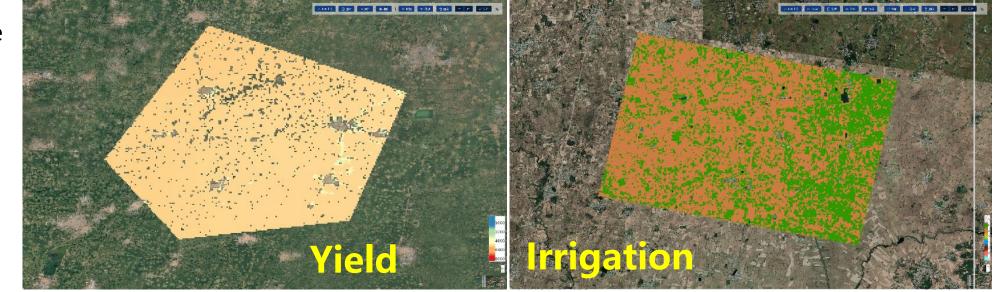
CropWatch Cloud and APIs

- CropWatch cloud can be accessed at anywhere and anytime and by anyone
- CropWatch APIs can be customized and tailored for specific requirements
 - All components and functions of CropWatch, including the self-calibration of models are packaged as APIs in the CropWatch-Cloud, for use and tailor
 - Modules: Agri-climatic, agronomic, production, and early warning
- Opening cropwatch to other interested stakeholders can help overcome hardware and technological limitations particular for those from developing countries



Participatory architecture

Participatory architecture with microservice, APIs and model library, provides users with the accessibility to independently carry out crop monitoring with different needs


Customized methods

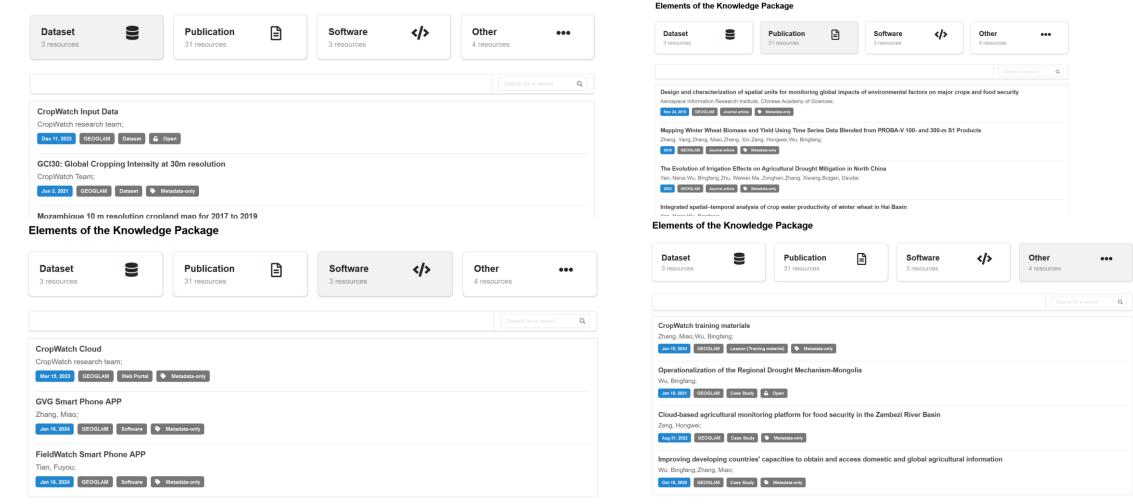
UN GEONOW 2024 首 届 联 合 国 地 信 周

- Interactive highresolution
 - > All crops
 - > Rice
 - > Yield
 - Irrigation and rainfed
- Meet user's demand for high-resolution monitoring
- Support for iterative parameter calibration

Service modes

- Customization of CropWatch and/or development of CMS for specific needs
- Data processing engine and download for local services
- Independent analysis for a country or IOA (Argentina, Cambodia, Mongolia)
- Reducing the cost and technical barrier of establishing CMS

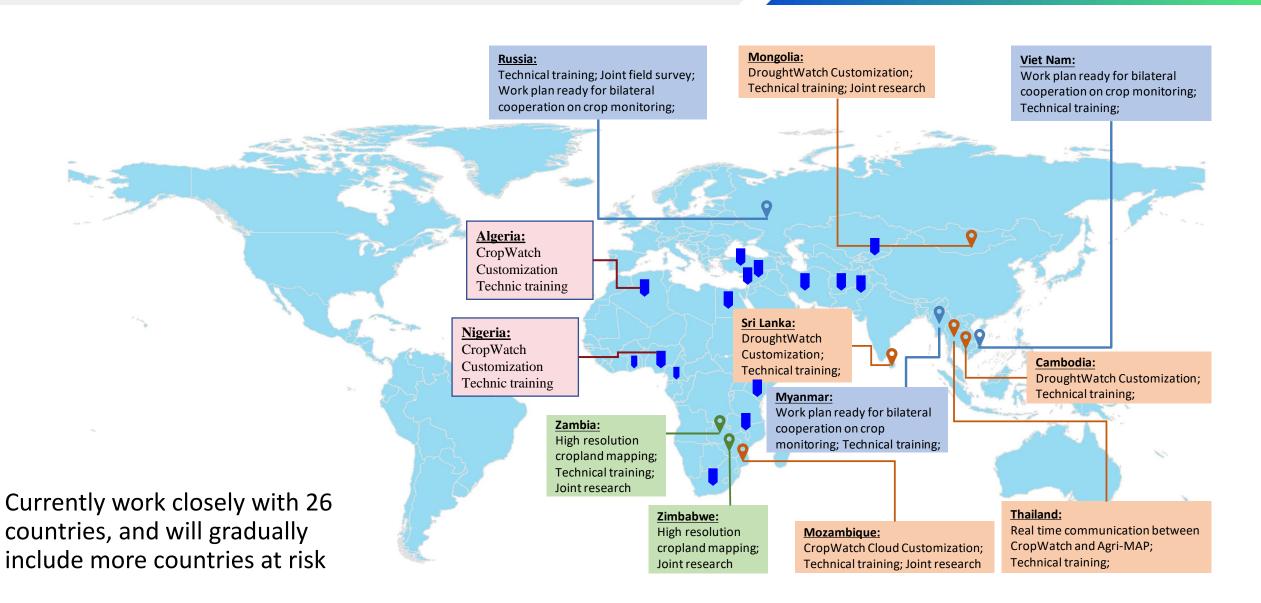
Disea a new enter the monitoring period covers the harvest of the main rice car periodimatic indicators. The land experiment we there and cools 22%, sightly below average temperature (TEMP -0.3°C, and poisonass production potential was estimated (BIOMS -1.3)	p as well a		- # (#+		
his monitoring period covers the harvest of the main rice cro groclimatic indicators, Thailand experienced wetter and coole 23%), slightly below average temperature (TEMP -0.3°C) and	p as well a		• # 1#+		
groclimatic indicators, Thailand experienced wetter and coole 23%), slightly below average temperature (TEMP -0.3°C) and					
the central region of Thailand. Therefore, rainfall is importan	average ra %). The ra t for crop	than use idiation tio of irr growth.	ual in this r (RADPAR 0 igated crop	monito 0%). As pland ii	ring period with above-average rainfall (RAIN a result of these indicators, a slight increase in n Thailand is approximately 22.5%. It is located
he NDVI development graph demonstrates that the crop con- end. The large negative departures are artifacts, caused by v verage although the temperature from November to Decemb tcober and at end of the November 2022, when it reached le the NDVI departure clustering and the corresponding profil cated in the northeast, eastern, central, and some areas in the te trends.	cloud cove er was slip vels close es, crop co	er in the ghtly hig to the 1 ondition	satellite im her than u 5-year max 5 were gen	nages. inusual kimum. ierally c	The temperature was mainly below the 15-year. The rainfall was high at the beginning of Subsequently, it followed the 15YA, According lose to average on 65.5% of total arable land,
t the national level, most of the arable land was cropped duri idex (CPI) in Thailand was 1.05. CropWatch estimates that the					
egional analysis					
he regional analysis below focuses on some of the already multivation typology. Agro-ecological zones include Central do rea (188), the Western and southern hill areas (189), and the	ouble and	triple-ci	ropped ric	e lowla	ands (187), the South-eastern horticulture
ompared to the 15YA, the Central double and triple-cropped ric bove average accompanied by lower temperatures (TEMP -0.3°C) stimate for BIOMSS (BIOMSS +1%). The NDVI development grap eriod except for Januare, as was the moderate VCIx value of 0.83.	e lowland and highe h shows th	s experie r rainfall at crop o	nced cooler (RAIN +309 onditions w	r and w %). The ere bek	etter conditions. Radiation (RADPAR +3%) was se conditions led to a slightly above-average ow the five-year average for most of the monitoring
dicators for the South-eastern horticulture area allow that lemps plane maints (RMA v215). This lied to a signify above-average es e crop conditions were slightly below average during this monitori form average. gradimatic indicators show that the conditions in the Western and (RPM - 0.11 c) were above average, while the maintail (RAM. + 20%) coording to the MDVI development graph, the crop conditions were seed as below average.	dimate for E ng period e I Southern) was abov	BIOMSS except in Hills we e averag	(BIOMSS * early Janua re slightly b e. The aven	2%). An ary. The below ar age we	ccording to the NDVI development graph, however, VCIx was at 0.85, All in all, conditions were slightly verage: radiation (RADPAR -2%) and temperature ather conditions led to a 3% increase in BIOMSS.
the Single-cropped rice north-eastern region, the temperature 7%) were above average. All these agrocimatic indicators led to a raph, the crop conditions were close to average. Considering the n	n increase	in potent	ial biomass	(BIOM	ISS +3%). According to the NDVI development
igure 3.41 Thailand's crop condition, October 2022- January 2	2023.				
Jam Jul Aug Sup Oct Ru	sw Dec	Jan	Feb Mar.	Apr	May
felm					
tur (Mair)		*			1
fee (Jacand)	1	. 1	5 9	*	*
Sowing 📕 Grawing 📕 Harw	enting		N 1 2	1	
The second se					
) Phenology of major crops	1		27 2	5	
	1 St	all and	& c	8	
	any?	1. 1	61		-
		1000	112		
	· 3	1 100.0	Contraction of the local division of the loc		
-15 03-03	-	1	30		ž


GEO Knowledge HUB

CropWatch is the first system from China indexed in GEO Knowledge HUB,

providing comprehensive information for new users from developing countries

Elements of the Knowledge Package

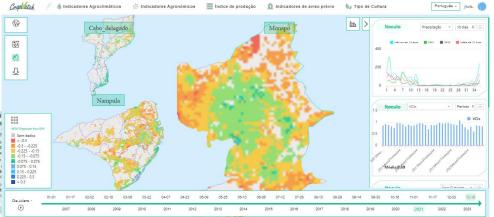

Capacity building activities

- Regional workshops and training seminars
- Bilateral works for country, including requirement analysis, field training, local language support...
- System customization
- Baseline data preparation
- CropWatch development to incorporate new requirements
- Regional center to enhance sustainable

UNGEONOW 2024 首 屈 联 合 同 III 2024

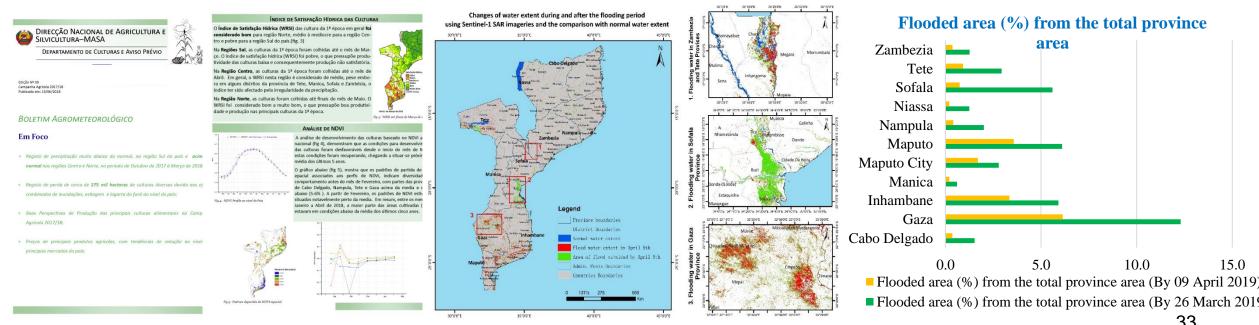
Capacity building activities

UN GEONOW 2024 首届联合国地信周


Capacity building in Mozambique UN GEONOW 2024

- Sponsor by World Bank
- First CropWatch training for selected experts (3 persons)
- Extended CropWatch training (29 participants)
- In-situ data collection training
- National Meteorological Bulletin powered by CropWatch
- CropWatch Cloud for Mozambique was included in Rural Solutions Portal by IFAD in 2020.

Activities	Outputs
Requirement analysis	Detailed Requirement report
Discussion and finalize the implementation plan	Detailed implementation plan
Discussion and joint field trip in Mozambique	In situ data in Maputo and Nampula
First technical training of CropWatch in Beijing	Agricultural monitoring report done by MOZ experts using CropWatch
Second technical training of CropWatch in MOZ	CropWatch based crop condition monitoring included in MOZ national meteorological bulletin
Training for national and provincial office	Mozambicans get some knowledge about crop monitoring on their own
Customize the CropWatch system for Mozambique	Provide system in Portuguese; Include all provinces for MOZ; Yield model calibrated



A customized CropWatch cloud (IN PORTUGUESE) platform provides crop-condition monitoring on the National, Provincial, district and region unites...

CropWatch-Mozambique

- Mozambique Ministry of Agricultural and Food Security used CropWatch monthly during the rainy season to produce Monthly Agro-meteorological Bulletin in Portuguese
- Flooding information was generated after IDAI Cyclone in 2019 for emergence responses
- One PhD student from Mozambique provides technical support at local

Lower Mekong countries

Coordinated by ESCAP

.

- Targeting countries: Cambodia, Laos, Myanmar, Thailand, Vietnam
- Indonesia, Malaysia, Philippine, Sri Lanka are joining
- Requirement analysis for each country during Inception workshop in 20-22 March 2019, Bangkok, Thailand
- CropWatch Cloud Customization during May to November 2019;
- Online Technical trainings in August 2020;

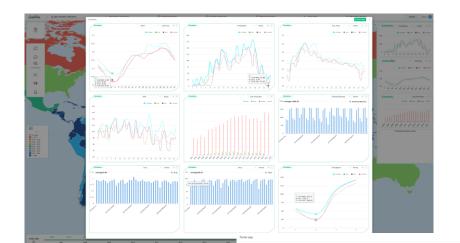
UNGEONOW 2024


Online training with 45 participants

Southeast Asia

Under the coordination from UNESCAP, CropWatch user manual and video of the training courses were translated into local language including Cambodian, and other languages

UN GEONOW 2024 首届联合国地信周


https://www.unescap.org/kp/2021/cropwatch-pro-user-manual-english-cambodian-lao-thai-and-vietnamnese?fbclid=lwAR0xlyWu5fOL1XSftjAV8lMv7aG2SFFbBnosfkYpSNnEFlxNhqf0WdHqlBA

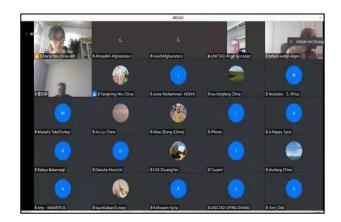
Customization for Cambodia

- Interfaces translated into the local language
- CropWatch4Cambodia provides detailed information of all available indicators (agroclimatic, agronomic, production, etc) for both national and sub-national units

	អ្នកប្រើប្រាស់កំណត់ពពកឃ្លាំមើលដំណាំដោយខ្លួនឯង				
សូចនាករកំពស់ទី	អតិបរមាVCI	សន្ទស្សន៍ភាពខុសគ្នាជម្មតារុក្ខ	លក្ខខណ្ឌដំណាំផ្អែកលើ		
កក្ដៀង		ដាកី	ភាពមិនប្រក្រតីNDVI		
សូចនាករ	សន្ទស្សន៍អប្បបរមាសុខភា	សន្ទស្សន៍ផ្ទៃក្រឡាស្លិ៍ក	សន្ទស្សន៍ផ្អែកលើ		
សីតុណ្ហភាព	ពរុក្ខជាតិ		ការវិវឌ្ឍន៍ដំណាំ		
រំភាយរស្ទីសកម្ម	ចំណាត់ថ្នាក់ដី	ប្រភាគនៃរំភាយរស្ដីស្រូបដោយរ	បណ្ដុំលក្ខខណ្ឌដំណាំ		
រស្ទីសំយោគ	ដាំដុះដំណាំបាន	ស្ទីសំយោក			
សក្តានុពលជីវម៉ាស	អាំងកង់ស៊ីកេដំណាំ	សន្ទស្សន៍ភាពខុសគ្នាជម្មតានៃ	ចំណាត់ថ្នាក់		
		ទីក	លក្ខណ្ឌដំណាំ		

Dashboard for Cambodia crop condition monitoring

			A A A A A A A A A A A A A A A A A A A	20 21 1 4 2 10 11 10 10 20 20 30 10 10
150 125 100 25	• 0844 0 0	Tonle. Presentation	Percent al Beneration	Tents: VOx Prest 1 2
Tonke, CALL 100 exercised 7.46 100 0 exercised 7.46 100 0 exercised 7.46 100 0 exercised 7.46 100 0 exercised 7.46 100 100 100 100 100 100 100 10	• Prind • == • CAS • CAS	Yonle		Totels. Pergatar Percent I III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000 III.000


UNGEONOW 2024

CropWatch-ICP

- Launching at 23rd UNCTAD annual meeting
- Kickoff at 22 March 2021
- Online Training Workshop of Earth Observation Applications for crop Monitoring, coordinated by CTAD, for three months over 23 March- 25 May, 2021
- Participating countries: Nigeria, Zambia, Malawi, Mozambique, Kenya, South Africa, Lebanon, Turkey, Syria, Afghanistan, Iran, Laos, Myanmar, Thailand,
- Theory, Methodology and Application: 12 courses from invited experts and 6 courses from CropWatch team
- Online practices: Participants from Algeria, Myanmar, Nigeria, Syria, Thailand and Mauritius finished the country analysis for May Bulletin 2021

UNGEONOW 202

Regional workshop

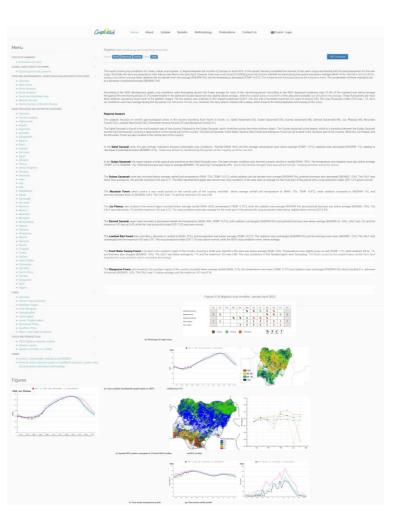
- Coordinated by UNCTAD, for four days during 7-10 AUG, 2023
- 27 trainees from 11 participating countries: Algeria, Cameroon, Ghana, Kenya, Lebanon, Malawi, Mauritius, Nigeria, Syria, Zambia, Zimbabwe
- Theory, Methodology and Application: courses from CropWatch team for in situ data collection, high resolution crop type mapping and area estimation
- Field work: GVG practice for sample collection

UNGEONOW 2024 首 民 联 合 国 地 信 国

Regional workshop for west Africa UN GEONOW 2024

- Coordinated by UNCTAD, for four days during 2-5 July, 2024
- 23 trainees from 8 participating countries: Nigeria, Cameroon, Ghana, Senegal, Niger, Mali, Burkina Faso, Liberia
- Field campaign was conducted for in situ data collection training
- CropWatch-ICP Regional Center at Nigeria was launched during the training workshop

Activities in Nigeria


Activities

- Implementation team
- > Work plan
- > All indicators for all provinces, and 775 LGA units available
- Stakeholder meetings involving 11 agencies
- After trainings, NASRDA is able to carry out independent crop analysis for Nigeria since the end of 2021

S/N⊖	Data⇔	Source	Resolution ← [□]	Coverage [←]	Date∈	Size←
1€	Agro-Ecological Zone⇔	, ,		Nigeria⇔	2021€	0.253692·MB
2↩〕	LULC←	Landsat←	30m.←	Nigeria 🖓	2000,2010,2020	4.348·GB↩
4€⊐	Multispectral Satellite Image ∉3	NigeriaSat-X· (NASRDA)⇔	22m ·(Green, ·Red, · Blue · and ·NIR) ←	Nigeria⇔	2011년	<u>4.0471-GB</u> ←
5⇔	Multispectral Satellite Image⊖	NigeriaSat-1 (NASRDA)↩	32m (Green Red and NIR bands)←	Nigeria⇔	2007€□	13.0462 ·GB
6←	Nigeria Administrative Boundary ⁽²⁾	OSGOF←	Shapefile	Nigeria⇔	2021년	10.6502·MB
7€	Nigeria·Soil∈	FAO€	1000m [∈]	Nigeria⇔	2011€	30.5527 · MB
8⊖	Rainfall←	TRMM€	0.25 degrees	Africa⇔	1989-2017↩	27.1·MB←
9∉⊐	SPOT€	сэ	2.5m [∠]	Nigeria⇔	2015	294.6 GB Packed on Zip
10⊖	Wetlands⇔	FAO€	1000m∈ [□]	Nigeria⇔	2020∈	1.9866 ·GB ←
11↩	Weather Stations ^{←1}	NIMET←	Shapefile←	Nigeria∉	2022€∃	0.00769329· MB⇔

Data shared from NASRDA

Outline

- Background
- CropWatch programme
- Capacity building
- Outlook

CropWatch Vision

Promoting ownership

- Customized according to the specific demand for each country and work as a national/regional system
- Respecting privacy
 - Countries will strengthen the agricultural monitoring capacity on their own
- Reducing constraints
 - Cloud based system assessable from internet everywhere without investment on computing infrastructure, storage, etc

Steps to implement CropWatch

Support developing countries for implementation of UN SDG 2 zero hunger, to enhance geospatial tools and support for food security

UN GEONOW 2024 首届联合国地信周

- Requirements analysis, targeting crops, monitoring units
- Formulation of work plans and baseline data preparation
- Trainings both in house and field, at national and subnational levels
- Stakeholder meeting for further requirement analysis
- Joint customization, independent models incorporated
- Analysis, reporting and services independently, technical support remotely
 - guarantee that CropWatch cloud is available, accessible, functionable, flexible
- Promoting ownership and no investment needed for infrastructure

Sustainability

- However, sustainability is big issue after training. We need to find out solutions
 - Regional center
 - > Fellowships: PIFI, ANSO,
 - Commitment, responsible for crop monitoring and early warning

UNGEONOW 2024 首届联合国地位国

THANK YOU