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Global burden of malnutrition

<=8 /33.4 million undernourished people (9.1%)
B 531 million adults are obese (15.8%)

g 148 million children under five years of age are stunted
1 (22.3%)

45 million children under five years of age are wasted
(6.8%)

37 million children under five years of age are overweight
(5.6 %)

Source: 2024 | The State of Food Security and Nutrition in the World (FAO, UNICEF, WFP, WHO, IFAD)



Global challenge of climate change

How could climate change affect global crop yields?

The maodeled impact of climate change on global crop yields in two scenarios:

RCP2.6 — in blue — a low warming scenario, and RCP8.5 — an extreme (and unrealistic) scenario in red.

Our current emissions pathway is between these two scenarios. Temperature and carbon fertilization effects are included.
Each dot is one individual crop model; the thick solid line is the mean across the 12 crop models.
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Source: Adapted from Jonas Jagermeyr et al. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models.
OurWorldinData.org — Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.

Jagermeyr, J., MUller, C., Ruane, A.C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., ...., Rosenzweig, C., 2021. Climate impacts on global agriculture
emerge earlier in new generation of climate and crop models. Nature Food 2, 873-885.



Increasing CO2 threatens human
nutrition
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Myers, S., Zanobetti, A., etc, 2014. Increasing CO2 threatens human nutrition. Nature, 510, 139-142.



Planetary boundaries

EAT Lancet Commission on Food, Planet, Health: Can we
feed a future population of 10 billion people a healthy diet
within planetary boundaries?
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Source: Azote for Stockholm Resilience FRESHWATER CHANGE
Centre, based on analysis in Richardson et al
2023
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UN Sustainable Development Goal 2

End hunger, achieve food security and improve
nutrition and promote sustainable agriculture
by 2030

End hunger|End all forms of malnutrition]

Double agricultural productivity and incomes|

Ensure sustainable food production systems| ﬁﬁmm
Maintain the genetic diversity of seeds, plants, and (gg

animals




Food security challenges

Decision making Is
under deep uncertainty




Food production data

i Conventional data source Complementary data source
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Data processing
ACCURATE l
Crop data Livestock data Aquaculture and
o Harvested area « Production levels fisheries data
e Yield » Breed, species and genetics e Species and stock
UP-TO-DATE e Production « Health and veterinary records e Feed and nutrition
e Crop calender e Feed and nutrition o Water source and area
e Pest and disease e Livestock movement e Hatchery and seed

e Post-harvest

e Harvest and landing
e Fertilizer application -

Source: Kebede, E.A., Abou Ali, H., Clavelle, T., Froehlich, H.E., Gephart, J.A., Hartman, S., Herrero, M., Kerner, H., Mehta, P., Nakalembe, C., Ray, D.K., Siebert, S.,
Thornton, P., Davis, K.F., 2024. Assessing and addressing the global state of food production data scarcity. Nature Reviews Earth & Environment.



Ambitious pursuit of Earth
Observation missions

Global coverage
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BUILDING ON THE LANDSAT LEGACY
)
@R L

Landsat Next
2020+

1982 - 1993

MSS/TM

GF-4 GF-3 GF-5 GF-6 GF-7 GF-DM
Landsat 5 GF-1 GF-2  Geostationary orbit SAR  Hyperspectral Red Edge Stereo Imaging Multi-mode
MSS/::\/': 2m 0.8m 50m 1m 30m 2m 0.65m 0.5m
‘ 2013.4 2014.8 2015.12 2016.8 2018.5 2018.6 2019.11 2020.7
1 1 [ | | | ] i [ k] !
2010 [ | | | ] 1 H | ] 4
2015.6 2015.9 2018.7 2019.10 2019.11 2020.10 2020.12
GF-8 GF-9 GF-11 GF-10 GF-12 GF-13 GF-14

Source: European Space Agency (ESA), NASA
Li, D., Wang, M., Guo, H., Jin, W., On China’s earth observation system: mission, vision and
application. Geo-spatial Information Science, 1-19.




Remote sensing technology devs.

Spatial resolution
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Persello, C., Tolpekin, V.A., Bergado, J.R., de By, R.A., 2019. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial
grouping. Remote Sensing of Environment 231, 111253.
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Machine learning devs.
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Remote Sensing & Food
Production
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e crops (various stressors)?
<<in season>>

What is the quantity and quality of crop yields?
<<in season, end of seasons>>
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Crop yield estimation

Spatial resolution:
Within field
Field level
L

Observed Estimated
+ FakouRa - .

Before harvest: interventions such as optimize inputs
e (water, fertilizers) to boost yield

end of season, within-
season, trends

Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S., 2019. High resolution wheat yield mapping using Sentinel-2. Remote Sensing of Environment 233, 111410.
Marshall, M., Belgiu, M., Boschetti, M., Pepe, M., Stein, A., Nelson, A., 2022. Field-level crop yield estimation with PRISMA and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing

187, 191-210.
Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D.R., Sidike, P., Fritschi, F.B., 2021. Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite

data and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing 174, 265-281.



Remote Sensing & Food
Production

e _— _

How healthy are the crops (various
stressors)?
<<in season>>

What is the quantity and quality of crop yields?
<<in season, end of seasons>>
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lodine, 5-1 billion (68%) Vitamin E, 5-0 billion (67%)
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Estimated prevalence
of nutrient intake
Inadequacies in 2018
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0 25 s . e Source: Passarelli, S., Free, C.M., Shepon, A., Beal, T., Batis, C., Golden, C.D., 2024. Global estimation of
— : — dietary micronutrient inadequacies: a modelling analysis. The Lancet Global Health 12, e1590-e1599.




Micronutrient deficiencies
“Hidden Hunger”
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Serious mental & physical health
problems

Diets rely heavily on
staple crops
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Gashu, D., Nalivata, P.C,, ....., Broadley, M.R. (2021). The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 594, 71-76



Spatial variation of crop nutrients

Upper

Midland Highland highland EAR
Energy (kcal) 2234.3 3453 4431.6 2869.7
Protein (g) 62.7 98.6 107.8 51.9 _
Fat (g) 20.1 27.5 30.4 85.5 En ergy and nutrient
Carbohydrate (utilizable) (g) 431.8 667.8 873.7 148.1 : .
Fiber (g 375 688 112 315 per capita production
Calcium (mg) 169 196.6 250.7 700.1 | N SO ut h \Wo | | 0,
Iron (mg) 35.9 57.3 105.5 12.1 : .
Zinc (mg) 15.4 26.1 38.7 11.3 Et h 10 p la
Vitamin A (ug RAE) 36.5 86.6 146.2 625.6
Folic acid (pg) 363 541.2 296.7 329.9
Vitamin C (mg) 51 9.4 8.9 38.6

Note: Values are production.

Abbreviation: EAR, estimated average requirement.

Guja-Bayu, H., Belgiu, M., Embibel, L., Baye, K., Stein, A. 2023, Examining energy and nutrient production across the different agro-ecological zones in
rural Ethiopia using statistical methods, Food Science and Nutrition, https://doi.org/10.1002/fsn3.3676
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Crop nutrient data? ) sanamnsn

Wet Chemistry Hyperspectral imaging technology

NIR spectra

Reflectance image

x Absorbance Segmentation “Chemical images”

Time-consuming & expensive

€
After harvest @ € €

Caporaso, N., Whitworth, M.B,, Fisk, I.D., 2018. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal
grains. Applied Spectroscopy Reviews 53, 667-687.



Data on crop nutrient

Crop grain samples

Satellite Images .
J [> Machine

Spatial co-variates learning

Early Flowering Late
stage stage



Crop nutrient data

Prediction Error for RandomForestRegressor

® R?=0.619
== hest fit
2400 == identity

Various spatial and temporal scales

Before harvest: interventions such as optimize inputs
(water, fertilizers) to boost yield quality
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Belgiu, M., Marshall, M., Boschetti, M., Pepe, M., Stein, A., Nelson, A., 2023. PRISMA and Sentinel-2 spectral response to the nutrient composition
of grains. Remote Sens. Environ. 292, 113567.




Reality check: bridging idealism
with reality

Local vs global levels

Geographic bias: studies focused on developed countries

Inconsistencies and inaccuracies: prevalent in developing
regions

Genetics * Environment * Management (GEM)



What do we need?

High quality and representative annotated data

Agriculture Digital Twins | Benchmark datasets

Hybrid approaches: process-based and machine learning

Multi-disciplinary teams and studies



What do we need?

e Machine learning based implementations evaluated

using metrics beyond F1 or R? scores:
aoy

/@ number of saved lives

$ lncome

yp~ # of organizations that reuse the data or model
to reduce the uncertainties in our decision making

Wagstaff, K, 2012. Machine learning that matters. Proceedings of the Twenty-Ninth International Conference on Machine
Learning (ICML), p. 529-536
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