Nationally Integrated Geospatial Information Management: How to Scale SDG Monitoring

Dean Angelides Corporate Director, Esri

Vision

GIS

Is Enabling a Sustainable World

Our World Needs a Nervous System

An Intelligent and Responsive Platform

Creating More UnderstandingCollaboration andAction

. . Geography Is Essential

Your Work Is Already Creating Geospatial Infrastructure

Intelligent and Responsive . . .

ŏ

Integrating All Sources of Data . . .

Creating Digital Nervous Systems for Your Organizations and Countries

> Connecting Everything And Everyone

Applying The Science of Where . . .

A System for Understanding . . . And Collaborative Action

Integrating Open Science, AI and Machine Learning

Revolutionizing Spatial Analysis and Data Science

Extending GIS to the Edge

Including and Integrating . . . Challenged Network Environments

Connected and Disconnected Many Apps Edge Computing Nodes Replication (Sync) **Internet of Things** Analytics and Data Management Geospatial **Real-Time Measurement** Infrastructure (Field / IoT / Remote Sensing)

Supporting GIS Workflows in All Environments

Edge Devices

Supporting and Integrating Advanced Technologies

3D Visualization

New and Improved

- 3D Smart Mapping
- Mobile
- Point Clouds
- BIM Support
- Symbology

Symbology

Effects

Extrusion

BIM Integration

Underground

BIM as Scene Layers

Mobile Scene Packages

Augmented Reality / VR

City Modeling

Lidar

Mobile

Field Operations Location-Enabling All Aspects of Field Work

New Capabilities

- Tracking
- Offline Workflows
- Preplanned Routes

Tracker

Planning and Management

Navigation

Navigator

Data Capture

Autor of the second sec

Survey123

Maps & Mark Up

Spatial Analysis and Data Science

Hosted Python Notebooks For Integration, Modeling and Automation

AI, ML and Deep Learning Integrating Open Science

Real-Time Analytics Integrating Sensor Networks and IoT

Supporting High-Velocity Data Streams Tracking, Monitoring and Alerting

Improved

- Performance
- Scalability
- Resiliency
- Cloud Connectors
- Actuation

Sensors

Vehicles

Assets

Real-Time Environment Data

Enterprise Now SaaS Coming

Collapsing the Time from Measurement to Decision Making

Magery A Comprehensive System for Imagery and Remote Sensing

Engaging and Interconnecting Communities

Bringing Together People, Organizations and Stakeholders

. . Collaborating Around Common Interests and Initiatives

http://odsprueba-ambiente-esri-co.hub.arcgis.com

Target Contribute to progress on the Target, not necessarily the Indicator										Goal	Indicator Direct measure or indirect support to the Indicator					
							1.4	1.5	1	No poverty	1.4.2					
						2.3	2.4	2.c	2	Zero hunger	2.4.1					
					3.3	3.4	3.9	3.d	3	Good health and well-being	3.9.1					
									4	Quality education						
								5.a	5	Gender equality	5.a.1					
		6.1	6.3	6.4	6.5	6.6	6.a	6.b	6	Clean water and sanitation	6.3.1	6.3.2	6.4.2	6.5.1	6.6.1	
					7.2	7.3	7.a	7.b	7	Affordable and clean energy	7.1.1					
								8.4	8	Decent work and economic growth						
					9.1	9.4	9.5	9.a	9	Industry, innovation and infrastructure	9.1.1	9.4.1				
						10.6	10.7	10.a	10	Reduced inequalities						
	11.1	11.3	11.4	11.5	11.6	11.7	11.b	11.c	11	Sustainable cities and communities	11.1.1	11.2.1	11.3.1	11.6.2	11.7.1	
				12.2	12.4	12.8	12.a	12.b	12	Responsible consumption and production	12.a.1					
					13.1	13.2	13.3	13.b	13	Climate action	13.1.1					
		14.1	14.2	14.3	14.4	14.6	14.7	14.a	14	Life below water	14.3.1	14.4.1	14.5.1			
	15.1	15.2	15.3	15.4	15.5	15.7	15.8	15.9	15	Life on land	15.1.1	15.2.1	15.3.1	15.4.1	15.4.2	
								16.8	16	Peace, justice and strong institutions						
17.2	17.3	17.6	17.7	17.8	17.9	17.16	17.17	17.18	17	Partnerships for the goals	17.6.1	17.18.1				

EARTH OBSERVATION AND GEOSPATIAL INFORMATION LINKAGES TO SDG GOALS, TARGETS AND INDICATORS

Population Below Poverty Line

Ireland

Poverty Incidence

+ 🕸 – 🔘

Philippines

USA

Healthy Food Access

California

Food Supply

UN-Yemen

Malnutrition

World

Precision Agriculture

New Zealand

Machine Learning using Drone Data

Captured images for two study areas

- **Animal Farms**
- Crop Farms
- **Use Esri Artificial Intelligence tools**
 - Multi-spectral image analysis
 - Auto-detect features
- Focus on-site inspections to farms that have regulatory issues

Animal Farms

3 cm resolution

Water and Sanitation Projects

Mozambique

Drainage Network Modeling

Sewer

Sanitation Cleanout

Locations

California

Water Monitoring

Los Angeles

Switzerland

Water Quality Monitoring

China

Work Order Management

Washington

New Jersey

Pipeline Alignment

Montana

1 /

Rooftop Solar Potential

Massachusetts

Solar and Wind Energy

Philippines

Solar Potential

Renewable Energy Connection Network

Southern California

Wind Farm Design

Bavaria, Germany

Wind Resources

Singapore

England

Renewable Energy Monitoring

China

AFFORDABLE AND

Electricity Consumption per Capita:

• Uganda (2016): kWh/Capita 71 • Germany (2014): 7,035 kWh/Capita • EU (2014): 5,909 kWh/Capita • World (2014): 3,128 kWh/Capita

Developing a GIS based decision support Model to decide whether it is more economical to electrify a village using Solar Home Systems, Mini-Grid or On-**Grid Solutions**

Data:

Energy Sector GIS Working Group Uganda Open Data Site

Solar Containers for rural

Electrification Planning in Uganda using Satellite Data

11 SUSTAINABLE CITIES AND COMMUNITIES

Urban Planning

Abu Dhabi, UAE

Vertical Intensification

Toronto, Canada

Urban Design

California

Urban Heat Islands

Minneapolis

Noise Pollution

Switzerland

Greece

Honolulu

Land Use

Miami-Dade

Recycling Communications

power of the SUNI Recycling is also available in many

other uplown locations, at all LYNX Blue Line light rail stations, in the

traention penter, and at all of

and requiring containers use the surfs energy to compact the track-and requiring in the containers on maintening costs are necessari. The solar also powers a monitoring device that with the City's Solid Waste Services

Walking and Transit Model

Wisconsin

Rail Status Monitoring

USA

Management

Germany

Public Transit

Washington

Postal Delivery

Los Angeles

Charlotte

CLIMATE Action 13

Glacial Melt

Monitoring Drought

South Carolina

San Francisco

Biomass Assessment

Forest Carbon Reserves

South America

Calculating First Ice Freeze

Forest Restoration

Wallowa-Whitman NF

Africa

Groundwater

Change

14 LIFE BELOW WATER

Marine and **Terrestrial Habitat**

Abu Dhabi, UAE

Ecologically **Significant Areas**

NOAA—Monterey Bay

Coral Communities

Martinique

Sediment Change

Biodiversity

Philippines

NOAA

Marine Sanctuary

California

Reef Health

Cook Islands

Australia

Marine

14 LIFE BELOW WATER

Predicting Environmental Phenomena Where Seagrasses Grows, Empirical Bayesian Kriging (EBK), Random Forest classifier

🗰 EMU_Global_90m ×

Fie	eld: 賱 Add	🕎 Dele	te 🕎 Ca	lculate	S	election:	🕀 Zoom	ົດ 📲 Swi	itch 🗏 C	lear 🙀 Do
⊿	OBJECTID	SHAPE	pointid	temp		salinity	appO2ut	dissO2	nitrate	percO2sat
	11	Point Z	24	-1.43314	4	34.18222	<null></null>	<null></null>	<null></null>	<null></null>
	13	Point Z	26	-1.43994	5	34.17537	<null></null>	<null></null>	<null></null>	<null></null>
	118	Point Z	307	-1.38740	1	34.32391	<null></null>	<null></null>	<null></null>	<null></null>
	753	Point Z	1739	-1.600642	2	34.03786	1.110779	7.211782	22.96304	86.85204
	754	Point Z	1740	-1.5623	8	34.02853	0.997919	7.310482	21.98382	88.18443
	871	Point Z	2184	-1.61909	8	33.9525	<null></null>	<null></null>	<null></null>	<null></null>
	872	Point Z	2185	-1.67876	8	33.97821	<null></null>	<null></null>	<null></null>	<null></null>
	882	Point Z	2211	-1.616092	2	33.94105	<null></null>	<null></null>	<null></null>	<null></null>
	884	Point Z	2219	-1.69790	7	33.92028	<null></null>	<null></null>	<null></null>	<null></null>
	885	Point Z	2220	-1.6847	1	33.92426	<null></null>	<null></null>	<null></null>	<null></null>
	886	Point Z	2221	-1.6910	1	33.94196	<null></null>	<null></null>	<null></null>	<null></null>
	887	Point Z	2222	-1.6906	1	33.93676	<null></null>	<null></null>	<null></null>	<null></null>

Empirical Bayesian Kriging

from sklearn.ensemble import RandomForestClassifier import numpy as NUM import arcpy as ARCPY import arcpy.da as DA import pandas as PD import seaborn as SEA import matplotlib.pyplot as PLOT import arcgisscripting as ARC import SSUtilities as UTILS import os as OS

Habitat Corridors

Atlanta

Wildlife Conservation

Watershed

Vilderness Tour

Wildlife Imagery

Invasive Species

Steens Mountain Wilderness, Oregon

Ecosystem Sensitivity

Green Infrastructure

Bolivia

Habitat Monitoring

California

Using Deep Learning to Assess Palm Tree Health

Leaf Spots and Leaf Blights of Palm

Bud Rot of Palm

Graphiola Leaf Spot (False Smut) of Palm

Image Classification to help Infer presence of contamination

Inferring presence of fungal & bacterial diseases using image classification enabling an immediate response to identify containment zones & to contain contaminations

• Benefits:

- Supervised Classification for autonomous systems
- Real-Time Detection & Accelerated Response

Fire Station Location/Allocation

Texas

EMS Resources

Tel Aviv, Israel

Fire Response Times

Marathon Viewshed

London, England

Protection

DHS

Acts of Terrorism

Violence **Hot Spots**

Syria

Officer Involved Shootings

Texas

Spatiotemporal Crime Patterns

Peru

16 PEACE AND JUSTICE STRONG INSTITUTIONS

City in Motion

Geography-Wide Monitoring

CRM Demographics, Visitor Lines

Analytics

Home/Work Locations

Signaling Network Movement, Roaming

₽₽₽₽

Data Packet Inspection DPI Web Activity 1 Billion Records Daily

