Fifth expert meeting of IAEG-SDG: WGGI

Report of Task Steam 1

-Geospatial Disaggregation and aggregation Supporting SDGs

Jun Chen¹ Macrena Perez Garcia²

¹ National Geomatics Center of China

² Executive Secretary SNIT, Chile

Dec. 5, 2018

Content

Task Stream 1

Activities in last six months

Future Plans

Questions

In April 2018, IAEG-SDGs: WGGI decided to establish a Task Stream on geospatial disaggregation and aggregation:

- Mandate: Provide expertise and advice to IAEG-SDGs and the larger statistical/ geospatial community as to how geographical disaggregation and aggregation can reliably and consistently contribute to SDG indicators measuring, analysis and monitoring
- Working period: 2018-2019
- **Co-leads:** Macarena Perez Garcia (Chile)

Jun Chen (China)

Geospatial Disaggregation and Aggregation

United Nation GA adopted the Global Indicator Framework (GIF) for the 2030 SDGs in its resolution A/RES/71/313 On 6th July 2017,

- SDG indicators should be disaggregated, where relevant, by income, sex, age, race, ethnicity, migratory status, disability and geographic location, or other characteristics, in accordance with the Fundamental Principles of Official Statistics [from the preambular of the GIF]
- Previous disaggregation and aggregation works were focused mainly on people-centric variables (such as gender, age, income, education, race, ethnicity, and disability)
- A geographic location perspective needs to be taken into consideration

Content

Task Stream 1

Activities in last six months

Future Plans

Questions

2.1 Prepared a work plan

2.2 Conducted a case study in Deqing County

2.3 Organized a special session during UN-WGIC

Defined the scope of Task

Aiming to identify and develop good practices, and document methodologies on geospatial disaggregation and aggregation for supporting SDGs.

(1) Develop a booklet on good practices by identifying exemplars

(2) Prepare a technical guideline by documenting methodologies

(1) Develop a Booket of Good Practises

Present 10-15 good practices or exemplars on geospatial disaggregation and aggregation from different regions from the world

Approach to Dust Forecasting Sample satellite-based dust forecast system

Three steps are needed to produce reliable dust forecasts (Figure 2). Step 1 is to assimilate satellite measurements over land into a dust simulator (Nickovic et al., 2001); Step 2 optimizes model outputs to determine model performance; and Step 3 requires public health authorities and health care providers to assess the versatility of dust information for health. The combined system adds a dust forecast to the daily regional weather forecast. Weather parameters include near surface properties. while dust parameters are drawn from Earth observing sensors. The system's performance has been verified and validated by comparing data obtained from ground monitors with modeled dust events between 2003 and 2008 (Morain and Sprigg 2005; Morain and Sprigg 2007; Morain and Budge 2008). These dust forecasts are beginning to be used by health care professionals in the region.

Weather Parameters Geopotential height Air temp (ground) Wind speed Wind direction Humidity	Step 1 Veather forecast model weather model	Step 2 Model test runs to iterate parameter combinations and optimize model	Step 3 Early detection and interventions
24, 48, 72hr. Precip. Surface Parameters Digital elevation Surface roughness Soil temperature Soil moisture content Land cover Barren land pattern	Couple weather and dust models Assimilate for dust entrainment	Run 1 Run 2 Run N	Health care providers and public health authorities Epidemiology

Figure 2: Step-wise procedure for forecasting dust episodes for health surveillance.

Metrics	Wind Speed (m/s)	Wind Direction (°)	Temp (K)	Definition
Agreement	0.74	0.74	0.71	$1 - \frac{\sum_{i=1}^{N} (M_i - O_i)^2}{\sum_{i=1}^{N} (M_i - \overline{O}) + O_i ^2}$
Index	0.75	0.76	0.95	

<u>Table 1:</u> Model performance metrics before and after data assimilation. Bold values are after data assimilation. For the equation M = modeled; O = observed

Figure 3: The triptych shows three generations of model improvements for a dust storm across New Mexico and Texas on 15-16 December, 2003. (left) the baseline model performance before satellite data were included, inidale) after satellite data replaced baseline parameters; (right) the same storm modeled by a higher resolution, weather forecasting model.

- Should come basically from or recommended by IAEG-SDGs: WGGI members
- How data can be disaggregated/ aggregated geospatially

and used for deriving indicators

Identify and collect good practices

- desirable to have a diverse set of examples from different regions and circumstances so that it has the greatest breadth of impact to various Member States.

Analyze and evaluate the proposed/ recommended good practices

• Edit and re-format the selected good practices

Prof Zhilin Li (Hon Kong Poly Univ.) and Prof Zhao Xuesheng (China Mining Univ.) agreed to assist the coordination

Summarizing available mainstream methodologies and tools which can be used for geospatial disaggregation and aggregation

- Concepts and methodologies for implementing disaggregation and aggregation by geographic location
- Typical applications in supporting SDGs measuring and monitoring.

Target readers include the both statistical and geospatial professionals.

A close collaboration with the UN-GGIM Expert Group on Integration of Statistical and Geospatial Information

1 Introduction

- 1.1 Needs of Data Disaggregation and Aggregation for SDG
- 1.2 Multiplicity and Diversity of Data for SDG

2 Data preprocessing

- 2.1 Unification of Space-Time Reference Framework
- 2.2 Geocoding of Statistical data
- 2.3 Normalization of Statistical data

3 Disaggregation for SDG

- 3.1 Interpolation with Area/Distance Weighting3.2 Dasymetric Disaggregation
- 3.3 Stochastic Allocation

4. Aggregation for SDG

4.1 Classification/Clustering4.2 Interpolation/Resampling4.3 Simplification/Typification4.4 Smoothing/Filtering

5 tools/resources 5.1 Software tools 5.2 Available resources

6 Examples and Recommendations

6.1 Selected examples6.2 Recommendations

References

Identify experts who are interested and able to contribution

Invite contributors for each chapter or sub-chapter

• Review and edit the manuscript

Prof Sonnian Li (Canada Rayson Univ.) & Dr Hu Yungang (Beijing Civil Eng. Univ.) agreed to assist the coordination

- This draft work plan was circulated to IAEG-SDGs:WGGI for comments
- A face-to-face discussion held during the UN-GGIM 8th session in Aug
- Reported to IAEG-SDGs: WGGI twice (July 27th and Oct 4th)
- Presented at the special session 'Geospatial disaggregation and aggregation in support of SGDs' during UN-WGIC on Nov. 20, this year

镇名	人口
Town names	population
武康街道	89944
阜溪街道	26008
下渚湖街道	23999
舞阳街道	52180
洛舍镇	20553
钟管镇	43856
莫干山镇	31643
乾元镇	49644
雷甸镇	37592
新安镇	31730
新市镇	72395
禹越镇	33297

镇名	人口
Town names	population
武康街道	89944
阜溪街道	26008
下渚湖街道	23999
舞阳街道	52180
洛舍镇	20553
钟管镇	43856
莫干山镇	31643
乾元镇	49644
雷甸镇	37592
新安镇	31730
新市镇	72395
禹越镇	33297

Establish relationship with the population density

镇名 Town names	人口 population
武康街道	89944
阜溪街道	26008
下渚湖街道	23999
舞阳街道	52180
洛舍镇	20553
钟管镇	43856
莫干山镇	31643
乾元镇	49644
雷甸镇	37592
新安镇	31730
新市镇	72395
禹越镇	33297

镇名 Town names	人口 population
武康街道	89944
阜溪街道	26008
下渚湖街道	23999
舞阳街道	52180
洛舍镇	20553
钟管镇	43856
莫干山镇	31643
乾元镇	49644
雷甸镇	37592
新安镇	31730
新市镇	72395
禹越镇	33297

Enabling integrated geospatial and statistical analysis

Three indicators were derived using the disaggregated data

- Indicator 3.8.1- *coverage of the basic health services;*
- Indicator 4.a.1- *allocation of educational resources;*
- Indicator 9.1.1- urban traffic
 - a. The proportion of rural population living within 2 km of the whole season highway;
 - b. Traffic accessibility;
 - c. X hour life circle

Indictor 3.8.1

SDGs— indictor3.8.1 *Coverage of basic health services*

- general hospitals- 3
- township hospitals -19
- Health service stations -134

Layout of medical and health facilities in Deqing County

Accessibility of general hospitals

Accessibility of general hospitals

Accessibility of Township Hospitals

Accessibility of Township Hospitals

Distribution frequency and cumulative frequency of service population of township hospitals

Accessibility of Health Service Stations

Accessibility of Health Service Stations

0 2 4 8 L I K Distribution frequency and cumulative frequency of service population in health service station

2.3 Organzied a Special Session in UN_WGIC

Parallel Session : Measuring and Monitoring the SDGs "GEOSPATIAL DISAGGREGATION AND AGGREGATION FOR THE SDGS"

> Tuesday, 20 November 2018 14:00 – 15:30 <u>E303, Exhibition Center</u>

Moderator: Prof Zhilin Li Hong Kong Polytechnic University

Presenters/Panellists:

- 1. Prof. Jun Chen, National Geomatics Center of China
- 2. Dr. Donna Clarke, University of Southampton
- 2. Prof Zhilin LI, Hong Kong Polytechnic University
- 3. Prof. ZHAO Xuesheng, China University of Ming and Technology (Beijing)

Content

Task Stream 1

Activities in last six months

Questions?

- 2018 Dec: Send out call for good practices/ exemplars, start preparations for a booklet
- 2019 April: Organize a Tele-mtg to discuss the conceptual framework, select the good practices, and prepare the draft technical guideline
- 2019 Aug: Organize a workshop in Chile or China, discuss the Booklet and the technical guideline
- 2019 Nov: Summaries and prepare a report to IAEG-SDGs

Content

Task Stream 1

Activities in last six months

Future Plan

Questions?

How to get the planned work done?

It depends critically on whether we have an active task force and keep going.

Major players--- members of IAEG-SDGs: WGGI

	Names	Society	Affiliation and Correspondence		
1	Zhilin Li	ISPRS	Professor, Hong Kong Polytechnic University		
2	Sisi Zlatanova	ISPRS	Professor, Melbourne University		
3	Songnian LI	ISPRS	Professor, Rayson University		
4	Monica Sester	ICA	Professor, Hannover University, Germany		
5	Yifang Ban	ICA	Professor, KTH, Sweedn		
6	Liqiu Meng	ICA	Prof. Munich Tech. Uni., Germany		
7	Andrew J Tatem	IGU	Professor, <u>Uni. of Southampton</u> , UK		
8	Giles Foody	IGU	Professor, University of Nottingham		
9	Martin Brady		Australian Bureau of Statistics, Canberra, Australia		
10	Xuesheng Zhao		Prof. China University of Mining & Technology, Beijing		
11	Yungang Hu		Associate professor, Beijing University of Civil Engineering and Architecture		

Question 1: How could an active task force be formed for Task Stream I?

Question 2: What would you contribute to the booklet and the technical guidelines?

Question 3: How should the call for good practices be sent out?

Question 4: How should we invite the invited international experts, through their affiliated international society (such ISPRS, ICA,...)?

Question 5: How should the drafted booklet and technical guideline be reviewed?

Question 6: What other resources should we mobilize to get the work done?

Fifth expert meeting of IAEG-SDG: WGGI

Report of Task Steam 1

-Geospatial Disaggregation and aggregation Supporting SDGs

Jun Chen¹ Macrena Perez Garcia²

¹ National Geomatics Center of China

² Executive Secretary SNIT, Chile

Dec. 5, 2018