

5th High Level Forum on United Nations Global Geospatial Information Management

Implementing the Sustainable Development Goals: The Role of Geospatial Technology and Innovation

Sheraton Maria Isabel Hotel, Mexico City, Mexico, 28-30 November 2017

Geospatial Data for Advancing Health-related SDGs

Ramesh S. Krishnamurthy, PhD, MPH, PHIF

Senor Advisor, Health Systems and Innovations Cluster World Health Organization

Key Messages

- Integration of geospatial data to health systems strengthening efforts shall be more widely practiced in the context One Health, SDG 2030 and UHC.
- At national-level, legal mandate is essential for closer collaboration between Ministry of Health and other relevant ministries and space agencies to leverage the benefits of geospatial data for health gains.

World Health Organization

United Nations specialized agency for building a better, healthier future for people all over the world

WHO at a glance

- 194 Member States
- Headquarters in Geneva
- 6 regional offices
- More than 150 country offices
- More than 7000 staff

- More than 700 institutions supporting WHO's work
- Close partnerships with UN agencies, donors, foundations, academia, nongovernmental organizations and the private sector

• Manila

Norld Health

ganization

World Health Assembly the decision-making body of WHO

Human health in the context of One Health

the interconnectedness of human health, animal health and the ecosystem

One Health

Source: OIE, 2016; http://www.oie.int/for-the-media/onehealth/

Protecting animals, preserving our future

One Health

Source: OIE, 2016; http://www.oie.int/for-the-media/onehealth/

Relevance of Geospatial data to health-related SDGs

Leveraging benefits of space science, geospatial data for advancing health agenda

HEALTH IN THE SDG ERA

TARGETS

16 PEACE AND

INDICATORS

2 ZERO HUNGER

	3.4	By 2030, commun	reduce by	one third premature mortality from non- 3.4.1 Mortality dispetes of	rate attrik	outed to cardiovascular disease, cancer,
3.2		3.8	Achieve u access to	niversal health coverage, including financial risk protection, quality essential health-care services and access to safe, 3.8.1	Coverag coverage	e of essential health services (defined as th e of essential services based on tracer inter
3.3	3.5		3.B	Support the research and development of vaccines and medicines for the communicable and non-communicable diseases that primarily affect	3.B.1	Proportion of the population with access medicines and vaccines on a sustainable
				developing countries, provide access to affordable essential medicines and vaccines, in accordance with the Doha Declaration on the TRIPS Agreement and Public Health, which affirms the right of developing	3.B.2	Total net official development assistance and basic health sectors
				countries to use to the full the provisions in the Agreement on Trade- Related Aspects of Intellectual Property Rights regarding flexibilities to protect public health, and, in particular, provide access to medicines for		
	3.6	3.9	36	all Substantially increase health financing and the recruitment,	201	Health worker density and distribution
	3.7		0.0	development, training and retention of the health workforce in developing countries, especially in least developed countries and small island developing States	3.6.1	
		3.A	3.D	Strengthen the capacity of all countries, in particular developing countries, for early warning, risk reduction and management of national	3.D.1	International Health Regulations (IHR) ca emergency preparedness

Matrix of Relevance

SDG	GEOSPATIAL DATA AND HEALTH RELEVANCE		
1: No Poverty	Prioritizing the health needs of the poor		
2: Zero Hunger	Addressing the causes and consequences of all forms of malnutrition		
6: Clean water and sanitation	Preventing diseases through safe water and sanitation for all		
10: Reduced inequalities	Ensuring equitable access to health services through Universal Health Coverage Based on stronger primary care		
13 Climate Action	Protecting health from climate risks, and promoting health through low-carbon development		
14: Life below water	Supporting the restoration of fish stocks to improve safe and diversified healthy diets		
15: Life on land	Promoting health and preventing diseases through healthy natural environments		

Use of space science and technology in environmental health and health systems research

Mapping WASH and NTDs...hotspot analyses

Source: Rifat Hossain, WHO, 2015

Topographic map from ALOS is useful in developing countries. Road network is essential to deliver vaccines and to visit medical facilities.

JAXA's GCOM-C will continue to observes surface temperature, which can be used for countermeasures of heat stroke.

Tracking of spread of animal born diseases: Small Animal Tracking from ISS: DLR ICARUS Project

90m/30m Upstream Water Sources - Kano Nigeria

Polio eradication project: Locating sample sites on the satellite images and tracking over time using JAXA's 5-m resolution DEM data

A Remote-sensing tool applied to Rift Valley Fever (RVF) Monitoring

Identify environmental factors of A. vexans & C. poicilipes presence by remote sensing to obtain risk map

Distribu

Source: JAXA, 2014 Grand canyon, USA.

This shows ALOS 3-D mapping capacity. It is the world's most accurate vertical resolution, 5m, among satellites.

Health Facilities Locator

Locating health facilities using space-based technologies: Mapping of health facilities

Metrics and Measurements

Data for evidence-informed decision-making

Integrating geospatial data as part of national health information architecture

Health Information System Landscape

A Set of Complex Sub Systems

Common health-relevant data sources

Examples of earth observation data

Near-real-time health-relevant earth observation data obtained from satellites

375 m Active Fire Aerosols **Brightness Temperature** Carbon Monoxide Cloud motion vectors (Winds) Cloud Top Pressure **Clouds and Trace Gases** Clouds/Aerosols Columnar Cloud Liquid Water over ocean Columnar Water Vapor over ocean **Corrected Reflectance Imagery** Dust Fire **Global Rainfall Global Total Precipitation** Land Surface Reflectance Land Surface Temperature Moisture Profiles Nitric Acid

Nitrous Oxide **Ocean Wind Speed** Ozone Profile Ozone Precipitation Radiances **Retrieved Carbon Monoxide** (Thermal Infrared Radiances) Sea Ice Concentration Sea Ice Snow Cover **Snow Water Equivalent** Soil Moisture Sulfur Dioxide Temperature Total Column Ozone and Aerosol Index **Total Precipitable Water** Water Vapor

Source: NASA, 2017. https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-data

Example of dataset required for national unified health information system

Future Health Information Platforms

Health information platform for monitoring public health combined with context specific geospatial data.

Digital Elevation Model (DEM): Worldwide coverage from NASA's ASTER mission with 30-meter resolution.

Water Resource Map: Aquifer yield data from multiple sources.

Improved water source location: Location of wells continually updated with new water projects via interactive Web 2.0 application.

LandScan Population Database:

commercially available 1-kilometer population database updated yearly (http://www.ornl.gov/sci/landscan/l andscan_data_avail.shtml).

Earth Observation and Geospatial Data

5th High Level Forum on United Na 29 November 2017 | Mexico City,

Water accessibility: (combination of layers) Access measured in amount of energy per capita (calories) needed to collect water, highlighting access limitations due to terrain. Also shows populations living on marginal land without water access.

Water resources per person: Determines whether underlying water resources (aquifer yield) can meet demand of overlying population based on 50 liters per person per day.

Areas with improved water access:

(combination of layers) Displays 1-km LandScan areas that have achieved water access per guidelines, i.e. at least one access point per 1-sq.km

Source: Rifat Hossain, WHO, 2015

Strengthening national capacities for utilizing earth observation data to advance national health-related SDG 3 targets

Need for a Conceptual Framework

Components of the Framework

- National readiness for using earth observation data in conjunction with routine health systems data
- 2. Multi-sectoral engagement for establishing earth observation data utilization environment in the national context
- **3. Alignment** of stakeholders, strategies, and efforts

Conceptual Framework for Country Capacity Development

For utilizing Satellite-based Earth Observation Data in advancing health-related SDG targets

Multi-sectoral engagement

Examples of Partners within Health Information Landscape

- Ministry of Health
- Ministry of Finance
- Ministry of Education
- Ministry of Labour
- Ministry of Telecommunications
- Ministry of Infrastructure
- Ministry of Science and Technology
- Academia and Private Health Sector
- Donors and Implementing Partners

Coordination is essential to owning and sustaining data analytics capacities at National and Sub-national Levels

Align Stakeholders

Value Chain of Solutions driven by Public Private Partnerships

Align Strategies

Value Chain of Solutions driven by Public Private Partnerships

Key Messages

- Integration of geospatial data to health systems strengthening efforts shall be more widely practiced in the context One Health, SDG 2030 and UHC.
- At national-level, legal mandate is essential for closer collaboration between Ministry of Health and other relevant ministries and space agencies to leverage the benefits of geospatial data for health gains.

Thank you

