

EO opportunities and challenges for achieving SDG 6.6

Marc Paganini, European Space Agency (ESA)

Sharing experiences on indicator 6.6.1 on freshwater related ecosystems, and exploring opportunities for better monitoring,

UN-GGIM HLF, INEGI, 27 November 2017

ESA UNCLASSIFIED - For Official Use

SDG Indicator 6.6.1: Change in the extent of	-1
water-related ecosystems over time	TIER III

Ecosystem types	Extent/Volume/Flow sub-indicators	Ecosystem Health sub-indicators
Vegetated Wetlands (water dominated ecosystems	Spatial extent/area	Wetland health indices
such as swamps, marshes and		

Inland an an arratem	Constint autout lance	Laba haalib tadtaa
peatlands)		
such as swamps, marshes and		
(water dominated ecosystems		
vegetateu vvetianus	Spatial extellity alea	Wetland Health mulces

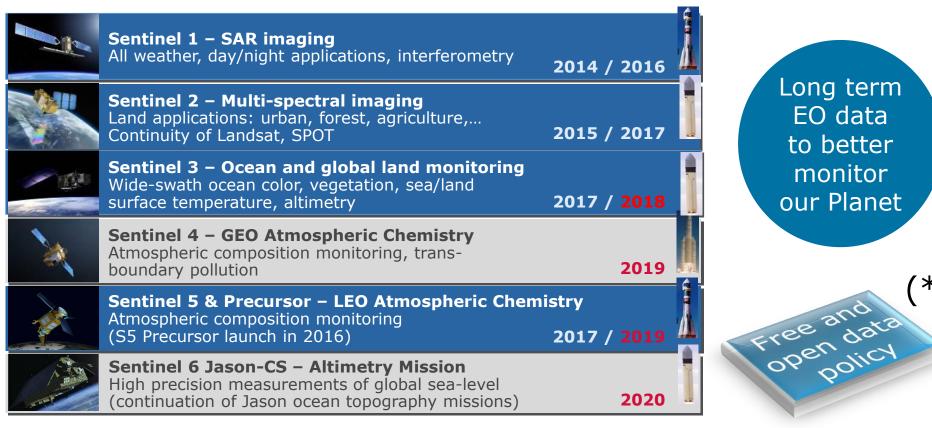
peatlands)		
Inland open waters (lakes and reservoirs)	Spatial extent/area Quantity (volume)	Lake health indices Water quality (6.3.2)

(lakes and reservoirs)	Quantity (volume)	water quality (6.3.2)
Rivers and estuaries	Quantity (streamflow)	River health indices Water quality (6.3.2)
Groundwater aquifers	Quantity	Groundwater interaction with

surface water

(depth to groundwater table)

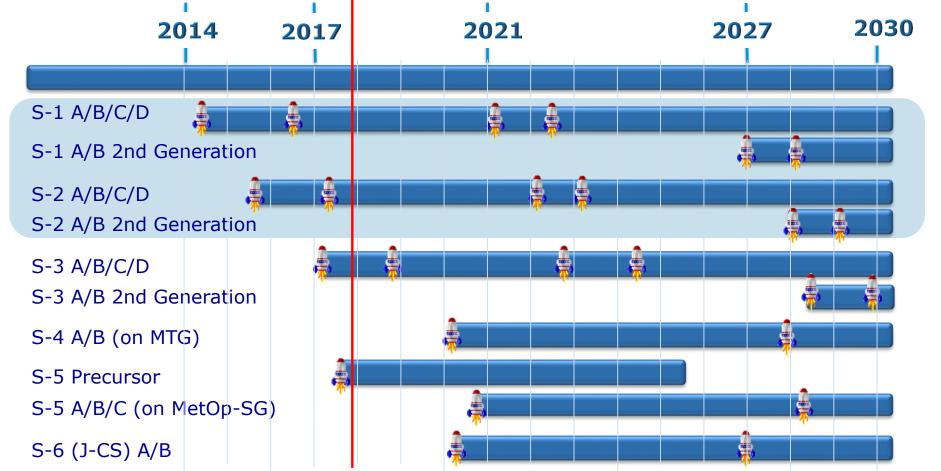
ch as swamps, marshes and atlands)		
and open waters kes and reservoirs)	Spatial extent/area Quantity (volume)	Lake healt
and and an extension	0	D' - le - le

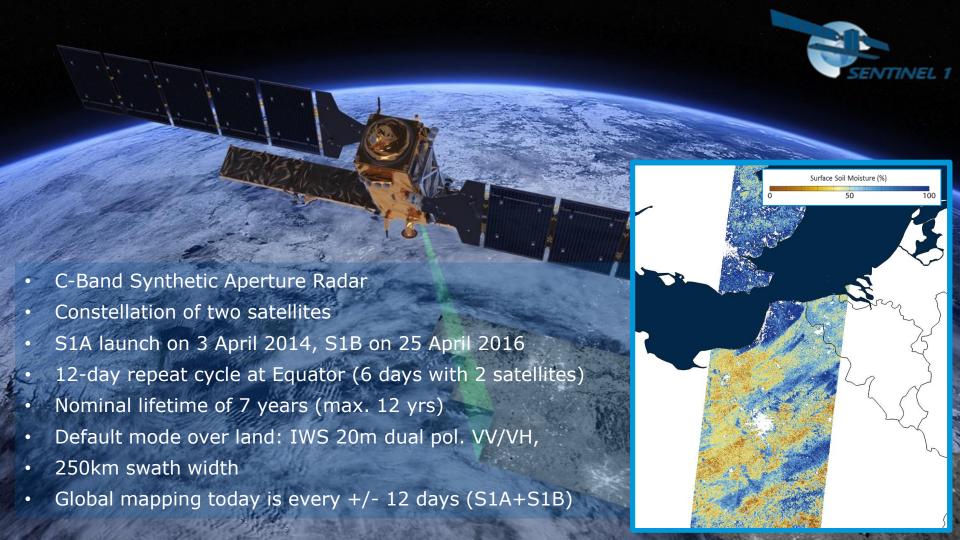

EO needs for monitoring water-related ecosystems globally

- Global and systematic observation scenarios with multi-sensor (radar/optical) approach to improve wetland inventories globally, which are still largely lacking.
- Multi-spectral bands with high radiometric performances to better distinguish the different wetland habitats, better delineate wetland areas, and better assess threats from agricultural practices, urbanisation and climate change.
- High spatial resolution to have more spatial details for capturing the variety of small habitats in wetlands and for detecting small water bodies.
- Short revisiting times to capture the seasonality of dynamic wetland ecosystems such as inundation regimes (permanent and seasonal waters) that are important indicators of healthy conditions of wetlands.

The European Copernicus program,

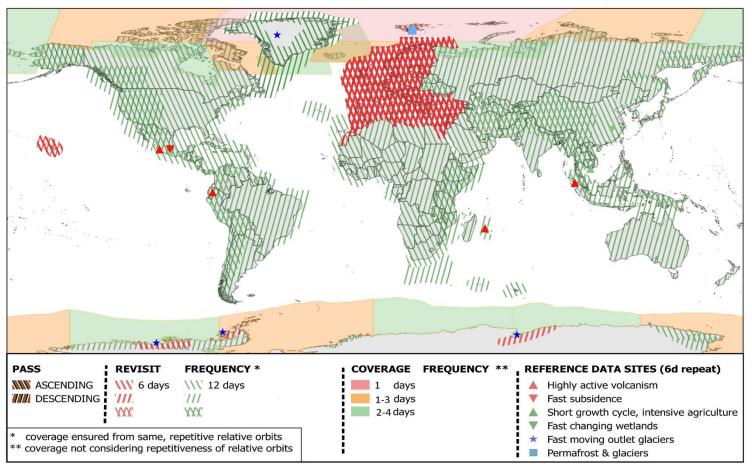
Securing satellite data access on the long term





^{*} Joint EU/ESA Data Policy Principles adopted by ESA Council and by EU Parliament and Council (Nov 2013)

The Sentinels of the European Copernicus Program



Sentinel-1 Constellation Observation Scenario: Revisit & Coverage Frequency

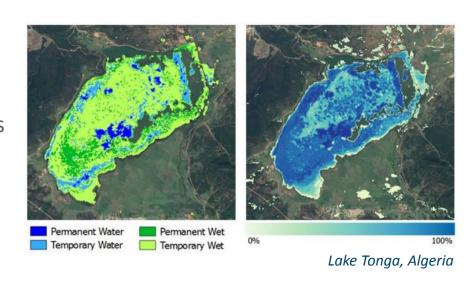
validity start: 05/2017

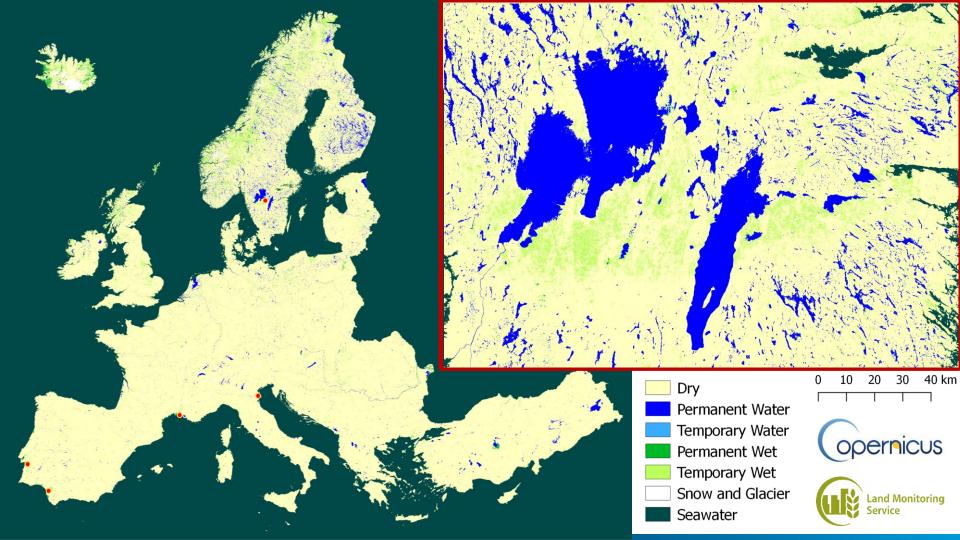
Sentinel 2 Observation Scenario

Baseline observation scenario in routine phase (S2A + S2B)

Systematically

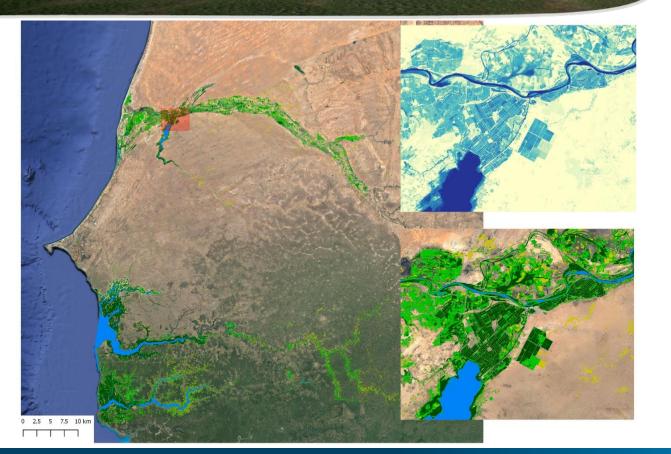
- All land surfaces between 56° South latitude (Cape Horn in South America) and 84 North latitude (north of Greenland)
- Major islands (greater than 100 km2 size),
- EU islands and all the other small islands located at less than 20 km from the coastline
- The whole Mediterranean Sea as well as all inland water bodies and closed seas
- S2A launch on 23 June 2015,
 S2B on 7 March 2017





EO for wetland inventories

- Identification and delineation of wetlands areas as a support to wetland inventories.
- Serve the needs of national/sub-national agencies interested in exploring possibilities to reduce costs of large-scale wetland inventorying campaigns.
- Exploit long and dense time series of satellite imageries to capture inter- and intra- annual variations.


Vegetated Wetlands		Inland Open Waters	
Spatial Extent	Health Indices	Spatial Extent	Water Quality
S1, S2, Landsat 8	S2, Landsat 8, (S1)	S1, S2, Landsat 8	S2, S3, Landsat 8, MODIS

EO for wetland inventories Senegal vegetated wetlands pre-inventory

Legend

WWPI [%]

10

____1

_____2

30

40

50

60

/0

80

90

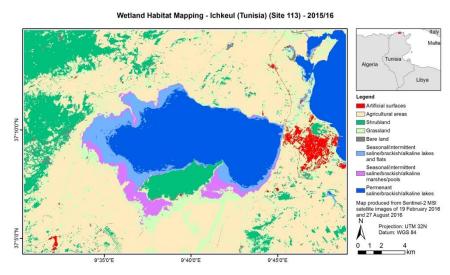
Wetland classification

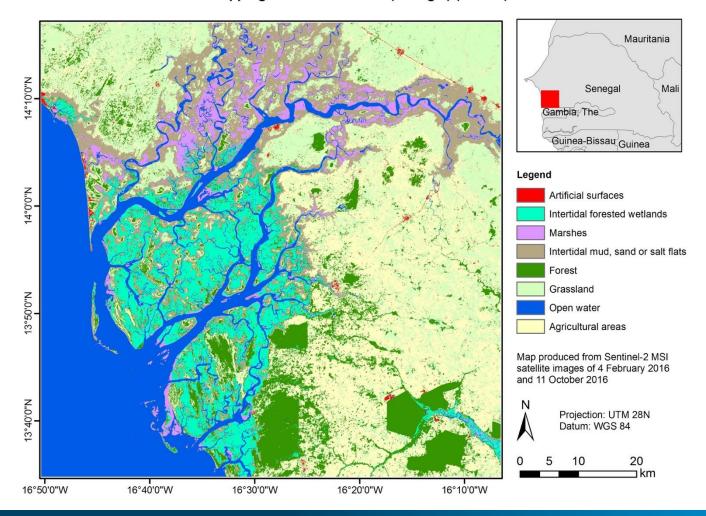
Permanent Water

Wetland - High Probability

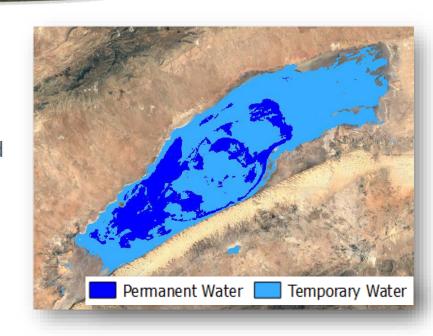
Wetland - Medium Probability

Wetland - Low Probability


EO for wetland habitat mapping



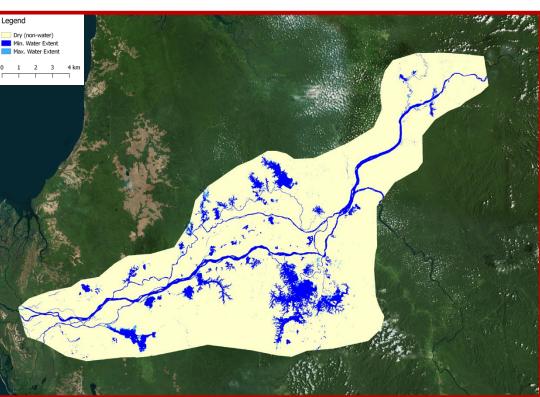
- Detailed classification of the land cover and land use inside and around the wetland site.
- Detect changes in wetland habitats, derive trends of wetland status, assess threats and estimate impacts.
- Exploit time series of HR optical satellite images to capture the variety of habitats in wetlands and detect threats.


Vegetated Wetlands		Inland Open Waters	
Spatial Extent	Health Indices	Spatial Extent	Water Quality
S1, S2, Landsat 8	S2, Landsat 8, (S1)	S1, S2, Landsat 8	S2, S3, Landsat 8, MODIS

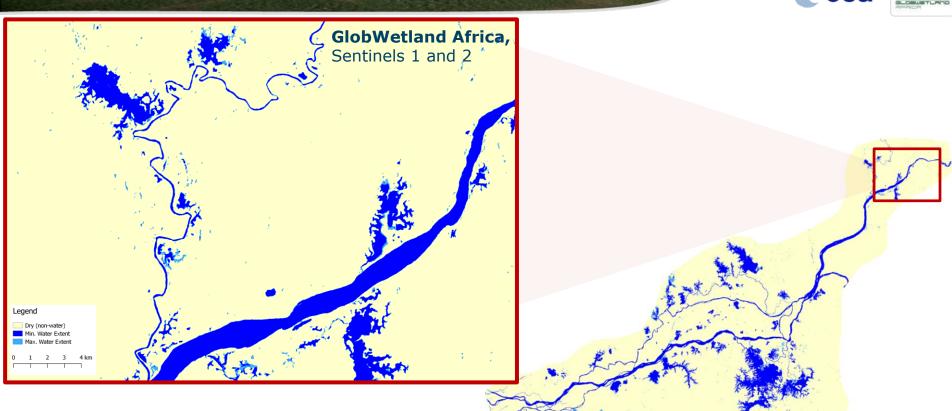
Wetland Habitat Mapping - Delta du Saloum (Senegal) (Site 98) - 2015/16

EO for changes in open surface waters

- Characterization of inter- and intra-annual variations of water bodies.
- Capture minimum and maximum surface water extent during each hydrological year and frequency of inundation.
- Exploit yearly "dense time series" of satellite imageries to capture the seasonality of inundation regimes.

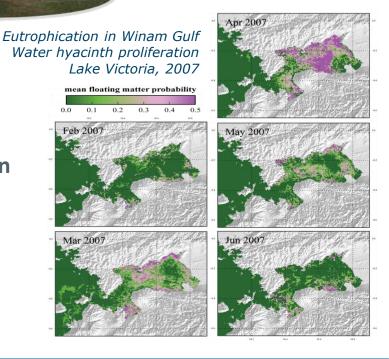

Vegetated Wetlands		Inland Open Waters	
Spatial Extent	Health Indices	Spatial Extent	Water Quality
S1, S2, Landsat 8	S2, Landsat 8, (S1)	S1, S2, Landsat 8	S2, S3, Landsat 8, MODIS

Mapping open surface waters with the Sentinels Bas Ogooué River, Gabon



Mapping open surface waters with the Sentinels

Bas Ogooué River, Gabon



EO for Water Quality in open waters

- Retrievals of suspended sediments, dissolved organic matters, chlorophyll concentration, cyanobacteria blooms in absolute or relative terms
- Allow to monitor wetland ecosystem contamination (water body eutrophication due to excessive nutrients) and to estimate physical disturbances.
- Spatial and temporal assessment of Water Quality using multi/hyper spectral satellite data.

Vegetated Wetlands		Inland Open Waters	
Spatial Extent	Health Indices	Spatial Extent	Water Quality
S1, S2, Landsat 8	S2, Landsat 8, (S1)	S1, S2, Landsat 8	S2, S3, Landsat 8, MODIS

EO integration into SDG implementation

Global Datasets Methodological Guidelines

Country Support Capacity Building EO Software Toolboxes Knowledge Hub & Platforms

Custodian Agencies

- Access to global / regional datasets.
- in the absence of or to complement and enhance, national data sources.
- countries which face major difficulties in collecting national data

- Support custodian agencies to develop method, guidelines
- EO Best Practices.

to countries.

- Scientifically sound approaches.
- Product validation.
- Show Cases.

National Statistical Offices Governments / Agencies

- Targeted activities to support NSOs and line ministries to report on SDG indicators.
- Support country level efforts to apply EO to track, monitor and achieve SDGs.
- Build capacity to exploit EO
- Training courses
- Training material on EO best practices
- Mainly targeted to developing countries
- Critical mass of technical centers

Key Stakeholders

- Free of charge
- Open source
- Easy to use
- EO Processing Toolboxes
- Thematic Toolboxes

- Facilitate access to Sentinel data

Knowledge sharing

- Access to global / regional datasets
- EO best practices
- Method. guidelines
- Visualisation and Analysis
- On-line processing
- Toolboxes

GlobWetland Africa, a free of charge and open-source EO toolbox for wetland inventory and monitoring

Wetland inventory

identification and delineation of wetland areas over large river catchments, in support to national wetland inventorying campaigns;

Wetland habitats maps

for the assessment of the wetland status and for long-term change and trend analysis, inside and around Ramsar/wetland areas;

Water cycle regimes,

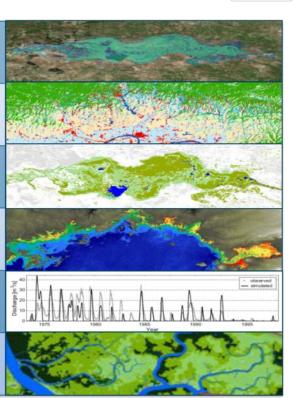
for the analysis of the intra- and inter-annual variations of the water tables, inside and around Ramsar/wetland areas;

Water quality parameters

such as turbidity, suspended solids and chlorophyll concentration, for the monitoring of the aquatic contamination and physical disturbances of the wetland ecosystem;

River basin hydrology

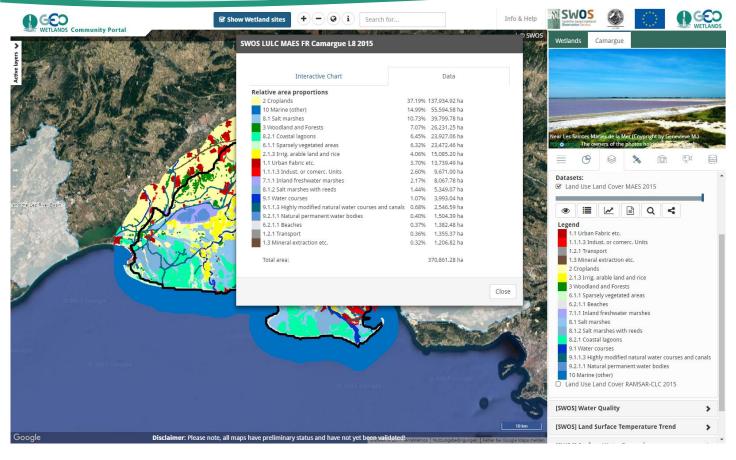
for the modelling of the water balance and the impact of/on wetlands within river catchments;


Mangroves mapping

for the assessment of the status and trends of tropical mangroves.

Inherits the **TIGER**Water Observations
Information System

How is the EO community getting organised to support SDG 6.6?


GEO-Wetlands mission: Develop sustained & global approaches to wetland inventory, mapping, monitoring and assessment

- A new GEO Initiative focusing on <u>wetland ecosystem/habitat monitoring</u> and on the specific needs of the wetlands community (<u>Policy & User Driven</u>)
- A community and open platform of <u>wetland observation practitioners</u> including academia, NGOs, national agencies, private companies, space agencies & international conventions (International Collaborative Effort)
- A framework for the co-design of the Global Wetlands Observation System (GWOS)
 (GEO-Wetlands Community Portal & Knowledge-Hub)

A collaborative framework for **international cooperation**, co-design of **innovative solutions** and **community engagement**

The GEO Wetlands Community Portal An EO knowledge sharing Hub for SDG 6.6

- User-friendly satellite data discovery and access
- visualization tools to explore available wetlandrelated datasets (e.g. GSW)
- Continuous upload of thematic products
- Products download
- On-demand Map / Indicator production (on-line processing in the future)
- EO best practices
- Inter-operable with with other GEO portals (OGC compliant)
- Access to **s/w toolboxes**

Global & Regional **Datasets**

Methodological Guidelines

Country Support Capacity Building

Software Toolboxes Knowledge Hub & **Platforms**

6.6 Expert Workshop, Switzerland, Sept 2015

UN Environment Custodian Agency SDG 6.6.1 Target Team

Ramsar, UN WATER, IWMI, CBD, WCMC, UNEP DHI, ESA, IUCN

- Global Mangrove Watch (JAXA)
- Global Surface Waters Explorer (JRC)

Step-by-Step Monitoring Methodology for SDG indicator 6.6.1

GPSDD funded "EO support for SDG 6.6. monitoring and reporting on wetlands", **Uganda**

GW Africa

CEOS/NASA datacube activities (Columbia, Senegal, Kenya)

- UN Environment capacity building on SDG₆
- GEO-Wetlands CB Working Group (TIGER, GW-A, SWOS)
- NASA SFRVIR
- GPSDD

UN Environment

- Monitor, Guidelines
- Benefit Showcases
- Toolboxes
- On-line processing

CEOS

datacube

Marc Paganini

Phone +39 06 94180 563 | Fax +39 06 94180 552 | marc.paganini@esa.int

