IIII HABITAT IIII UNIVERSITIES

Geospatial Information for Climate Change and Disaster Mitigation

Determining Information Needs

Shuaib Lwasa

Department of Geography Geoinformatics and Climatic Sciences

Makerere University

Email: lwasa_s@caes.mak.ac.ug

Climate Change and Disaster Mitigation

Issues

Largely slowonset disasters

Hydrological

Meteorological

Biological

Rapid-Onset disasters

Disasters and processes leading to the disasters are less systematically monitored

Runaway cities

Lessons learned and gaps

Hydrological scenarios

High temporal resolution weather data

Hydrology data

Spatial cascade of disasters

Some Ideas on how to address data gaps

Scenarios, planning for preparedness

Multi-level system for data

capture

Administrative boundary approach

Grid-based approach

Episodic monitoring of Disasters and Loss Data Peril and Hazard Classification

Key Messages

Integrating climate change and disaster into planning

Timely production of credible, easy-to-use information

SAR

 Multiple scales at which geocoded socio-economic information is required

Mixed approach of grid-based and administrative boundary based

Importance of Prediction and Scenarios; improvement of climate

TAR

AR4

models

