ISPRS

International Society for Photogrammetry and Remote Sensing

Serving society with information from images

Orhan ALTAN 1st VP

Table of content

- Mission and vision,
- Internal structure
- Importance of Imagery
- Activities
- Legacy

ISPRS is ...

- science and development in
 - photogrammetry, remote sensing, spatial information
- cooperation between different stake holders
 - academia, private industry, government, end users
- truly global cooperation
 - education, technology transfer, capacity building

Focus on photogrammetry

No.	Commission title	President
I	Sensors and platforms for remote sensing	Charles Toth (USA)
II	Theory and concepts of spatial information science	Songnian Li (CAN)
111	Photogrammetric computer vision and image analysis	Konrad Schindler (CH)
IV	Geospatial databases and location based services	Jie Jiang (China)
V	Close-range imaging, analysis and applications	Fabio Remondino (Italy)
VI	Education, technology transfer and capacity building	Jianya Gong (China)
VII	Thematic processing, modeling and analysis of remotely sensed data	Filiz Sunar (Turkey)
VIII	Remote sensing applications and policies	Vinay K. Dadhwal (India)

Focus on remote sensing

No.	Commission title	President
I	Sensors and platforms for remote sensing	Charles Toth (USA)
Ш	Theory and concepts of spatial information science	Songnian Li (CAN)
	Photogrammetric computer vision and image analysis	Konrad Schindler (CH)
IV	Geospatial databases and location based services	Jie Jiang (China)
V	Close-range imaging, analysis and applications	Fabio Remondino (Italy)
VI	Education, technology transfer and capacity building	Jianya Gong (China)
VII	Thematic processing , mode-ling and analysis of r.s. data	Filiz Sunar (Turkey)
VIII	Remote sensing applications and policies	Vinay K. Dadhwal (India)

Focus on spatial information science

No.	Commission title	President
I	Sensors and platforms for remote sensing	Charles Toth (USA)
II	Theory and concepts of spatial information science	Songnian Li (CAN)
	Photogrammetric computer vision and image analysis	Konrad Schindler (CH)
IV	Geospatial databases and location based services	Jie Jiang (China)
V	Close-range imaging, analysis and applications	Fabio Remondino (Italy)
VI	Education, technology transfer and capacity building	Jianya Gong (China)
VII	Thematic processing, modeling and analysis of remotely sensed data	Filiz Sunar (Turkey)
VIII	Remote sensing applications and policies	Vinay K. Dadhwal (India)

Developments in ISPRS

- Early tasks since founding (of ISP) in 1910 included all aspects, including policies, of map production
- Map products were the spatial data infrastructure (SDI) of a country
- Hence the Society has had a significant influence on the development of what was then the foundation of SDIs around the world.
- Interoperability and data sharing were only addressed in a rudimentary way by paper map products

Developments in ISPRS

- Name change in 1980 to include Remote Sensing
- Ad hoc Committee report in 1990 –
 'the acquisition of spatial data by photogrammetry and remote sensing could not be divorced from its subsequent processing and management'
- *'recent developments in ISPRS however have seen ISPRS activities expand .. into a much wider range of topics'*
- Activities of ISPRS should 'include data acquisition, data modelling, data base management' etc

Developments in ISPRS

- SDI has always been a core task for ISPRS
- Hence it is very appropriate for ISPRS to be covering the topic of SDI in its current activities
- SDIs originally presented in hardcopy form
- Now the full range of new technologies is available for the development of SDIs as one element of the infrastructure of a country
- We look forward to further developments in this area in ISPRS

Imagery is Core to GIS

They complement each other

Contextual relationships Visual integration Data management Spatial analysis

Timely, rich information Measurements & analysis Authoriative source

GIS bring value

Increasing the value of imagery

The Importance of Imagery

Many uses:

- Natural background
- Direct interpretation
- Statistics and analysis
- Source of most vector maps
- Verification of analysis results
- A near real-time data source

Critical Issues (1/2)

- Management of global geospatial information to address and rapidly respond to key global challenges including climate change, disaster management, peace and security, and environmental quality,
- Changing roles of governments in the emergence of growing capability of the private sector in geospatial information development and location-based services,
- Coordination among Member States, and between Member States and international organizations on geospatial information management

Critical Issues (2/2)

- Principles, policies, methods and mechanisms for standardization for rapidly evolving technologies, and interoperability and sharing of geospatial data and services by overcoming legal and institutional barriers,
- Compilation and dissemination on best practices of geospatial information management,
- Development of effective strategies on capacity building for the management of geospatial information, especially in developing countries.

Current Situation

- Space agencies are working together to complete the tasks set out within the GEO (Group on Earth Observation)
 Global Earth Observing System of Systems (GEOSS)
- See CEOS publication Satellites, Science and Society Of particular note are the applications of Earth observation data to forestry, agriculture and DEM generation.
- Another important technology advance developed through GEOSS is the use of GEONETCast

ICSU-GeoUNIONS Projects

Mapping GeoUnions to the ICSU Framework for Sustainable Health and Wellbeing:

Focus on sub-Saharan African Cities

In collaboration with the ICSU Regional Office for Africa

Prepared by the ICSU GeoUnions Joint Science Program Team Amelia Budge - ISPRS Ania Maria Grobicki - IUGG Mark Rosenberg - IGU & GEC-HH Olle Selinus - IUGS / IMGA Eiliv Steinnes - IUSS Achuo Enow - ICSU / ROA

With special assistance from Margaret Avery - INQUA Theo Davies - IUGS Agnes Kijazi - GEC-HH

> Project Coordinator Stanley Morain - ISPRS

UNOOASA-JBGIS Projects

PUBLICATIONS

Featured Publications Information Materials

VALID

The Value of Geo-Information for Disaster and Risk Management - Benefit Analysis and Stakeholder Assessment (Women reg PUBLICATION PROJECT: The Value of Geo-Information for Disaster and Risk... (Download), (Download)

Geoinformation for Disaster and Risk Management -Examples and Best Practices

Hom

ISPRS Mission: why we exist

- ... to advance the photogrammetry, remote sensing and spatial information sciences through international cooperation in research, development and education for the benefit of society and for environmental sustainability.
 - (from ISPRS Strategic Plan 2010)

ISPRS Vision: where we want to go

- ... to be the foremost scientific society in its field and for the Society at large,
- to speak for all people working in the field,
- to provide the necessary resources to develop the field.

(from ISPRS Strategic Plan 2010)

Last slide

- Session 5: Challenges in Developing Core Global Reference Datasets;
- Gottfried Konecny, University of Hannover, (form. Pr. And Hon. Memb. ISPRS) will report on the UNGGIM-ISPRS Project;

«Study on the Status of Mapping in the World»