Current State of Global Geodesy Supply Chain From the ITRF perspective/experience

Zuheir ALTAMIMI and the ITRF team + others

IGN-IPGP, France

Meeting of Expert Consultation on Strengthening the Global Geodesy Supply Chain 22-23 April 2024, GGCE, Bonn, Germany

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

Key points

- The ITRF supply chain, part of the Global Geodesy Supply Chain
- Space geodesy techniques contributing to the ITRF
- Why is the ITRF needed?
- Critical points impacting the ITRF accuracy
- Strengths and weaknesses of space geodesy techniques
- Focus on SLR and VLBI, and why?
- Illustrations based on ITRF2020 input data

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

What is a Reference Frame in practice?

Earth fixed/centered Reference Frame: allows determination of point positions and satellite orbits as a function of time Orbit When analyzing space geodesy data, we have to take into account: **Relativity theory** — **Origin**, Scale Forces acting on the satellite & Orientation - The atmosphere – Earth rotation Solid Earth and ocean tides (X,Y,Z)Linear and nonlinear variations/deformations ٠ 0,0,0 ==> Station coordinates are function of time Accuracy: few mm and few 0.1 mm/yr for the best stations

Positioning geospatial inf

Earth Fixed/Centred Reference Frame Z. Altamimi

United Nations Initiative on Global Geospatial Information Management

ITRF Supply Chain: an International Effort

Schematic illustration of the chains leading to the ITRF generation

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

N-GGIM

Space geodetic techniques contributing to the ITRF

JN-GGIM

SLR

GNSS

DORIS

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

Geodetic Infrastructure: our heritage

GNSS

DORIS

BUT: only 35% of VLBI and SLR sites are in operation today Most of the old decommissioned sites were of poor quality

Positioning geospatial information to addres

United Nations Initiative on Global Geospatial Information Management

UN-GGIM

Colocation site

Why is the ITRF needed?

Science applications:

Operational geodesy applications:

- Positioning : Real Time or a posteriori
- Navigation: Aviation, Terrestrial, Maritime
- Regional/National geodetic frames
- Today: via GNSS only!
- Require the availability of the IGS orbits and the reference frame (ITRF)
- Many, many users...

GNSS-specific reference frames:

 GTRF/Galileo, WGS84/GPS, PZ-90/GLONASS, CGCS2000/Beidou, JGS/QZSS

JN-GGIM

All are aligned to the ITRF

Continuous observations are fundamental

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

Resolutions on ITRS & ITRF

- <u>IUGG2007</u>: adopted the ITRS as the preferred Geocentric Terrestrial Reference System (GTRS) for scientific and technical applications
- <u>CGPM2011</u>: recommends that the ITRS, as defined by the IUGG and realized by IERS, be adopted as the unique international reference system for terrestrial reference frames for all metrological applications
- <u>ICG2012</u>: recommendation to align GNSS-specific reference frames (WGS84, PZ90, GTRF, CGCS2000, JGS) to the ITRF
- <u>IUGG2019</u>: recommend to the user community that the ITRF be the standard for positioning, satellite navigation and Earth Science applications, ...
- <u>UN-GGIM-2019</u>: adoption of the ITRS and the ITRF as the standard for scientific, geospatial and operational geodetic applications
- ISO Standard on ITRS/ITRF

Positioning geospatial information to address global challenges

Critical points impacting the ITRF accuracy

- **1. Reference frame definition :**
 - Origin, scale, orientation and their time evolution
 - Science requirement : 1 mm accuracy and 0.1 mm/yr stability
- 2. Network geometry / coverage of the 4 technique networks over the Earth surface: Well distributed networks are needed
- 3. Accurate, continuous & regular observations to accurately model linear and nonlinear station motions: long time series are needed to maintain the frame over decades

4. Accurate / repeated local ties at colocation sites

United Nations Initiative on Global Geospatial Information Management

Why Multiple Techniques for the ITRF?

- VLBI & SLR:
 - Fundamental for an accurate definition of the ITRF physical parameters/properties
 - SLR determines Earth Center of Mass ==> ITRF origin
 - SLR & VLBI define the ITRF scale
 - VLBI places the Earth in space ==> Link to the ICRF

[GCRS] = Q(t)R(t)W(t) [ITRS]

- But their ground networks are poorly distributed and in danger of degradation
- DORIS: disseminates ITRF in satellite orbit determination
- GNSS:
 - Ensures the link between SLR, VLBI & DORIS networks
 - Is the tool today to access the global ITRF by the regions and nations using IGS products

Technique systematic errors

- **DORIS**: mis-modelling of the solar radiation pressure ==> inaccurate geocenter components, and nonlinearity in the long-term TRF scale
- **GNSS** have multiple weaknesses in recovering the Earth center of mass position and the TRF scale (in the absence of satellite metadata)
- **SLR** range biases have significant impact on the TRF scale
- VLBI antenna gravitational deformation ==> impact on the TRF scale
- Progress towards improving the TRF scale determination :
 - GNSS : Metadata are now available for Galileo, Beidou, QZSS, GPS Block III
 - SLR : ILRS adjusts RBs since ITRF2020, improving the scale and its agreement with VLBI
 - VLBI : Deformation models for a number of antennas are now available
 - DORIS : Investigations by IDS are in progress

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

ITRF2020 Input Data

ТС	# of solutions	Time-span	# of sites	Frame Origin
IDS/DORIS	1456 weekly	1993.0 – 2021.0 (<mark>28 yrs</mark>)	87	СМ
IGS/GNSS/GPS	9861 daily	1994.0 – 2021.0 (<mark>27 yrs</mark>)	1159	CN
ILRS/SLR	243 fortnightly 1460 weekly	1983.0 – 1993.0 1993.0 – 2021.0 (<mark>38 yrs</mark>)	100	СМ
IVS/VLBI	6178 session- wise	1980.0 – 2021.0 (<mark>41 yrs</mark>)	117	CN

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

C

UN-GGIM

VLBI and SLR stations used in ITRF2020

Curent SLR & VLBI Networks

ggim.un.org

Global Geospatial Information Management

Animation / movie Evolution of VLBI Sessions during the year 2020:

142 sessions all in all Notice regional sessions not well designed for the TRF: xxx sessions

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

im.un.org

VGOS Stations

Animation / movie Weekly SLR processing residuals using measurements of Lageos I & II, Etalon I & II, Year 2023

United Nations Initiative on Global Geospatial Information Management

Positioning geospatial information to address global challenges

Measurements on LAG1, LAG2, ETA1 and ETA2

JJCNES between 26649 and 26655

ggim.un.org

lenges

Animation / movie Evolution of weekly SLR network during the year 2023

United Nations Initiative on Global Geospatial Information Management

Positioning geospatial information to address global challenges

List of all stations used between JJCNES 26649 and 26655

Stations observing LAG1, LAG2, ETA1 and ETA2

VLBI & SLR Data Volume in years up to 2021.0

Shown are stations with data volume > 1 year

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

JN-GGIM

ITRF2020: Local tie Discrepancies

LT Discrepancies: Differences between terrestrial ties and space geodesy estimates Local tie vectors between GNSS and the 3 other techniques at co-location sites

GNSS to :	Total tie vectors	Discrepancy	% Discrepancy
	ITRF2020	> 5 mm	> 5 mm
VLBI	77	39	50
SLR	53	34	64
DORIS	123	84	68

United Nations Initiative on Global Geospatial Information Management

UN-GGIM

ITRF : Uncertainty in the frame definition/specification

- Origin: Rely on one technique : SLR
 - Long-term uncertainty: at epoch 2015.0: up to 5 mm
 - Stability / rate : up to 0.5 mm/yr
- Scale: Average of SLR & VLBI
 - Long-term uncertainty (level of agreement between SLR & VLBI):
 - ITRF2014: 1.4 ppb (~8 mm at the equator)
 - ITRF2020: 0.15 ppb (~1 mm at the equator)
 - Stability / rate : depend on "agreement of site velocities"
 - SLR & VLBI scale time series are not linear!!

-GGIN

- Orientation: Alignment of successive ITRF solutions using a selection of reference frame stations
 - Long-term & stability / rate uncertainty : dictated by the so-called network effect: up to 30µas (1mm)

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

Future / Planned VGOS stations

Known project h	γ IVS	nember	institutions			
Location	Lat, 1	Lon	Country	2/pe	Responsible Agency	Flanned Commissioning Date
Seshan13	31 N,	121 E	China	upgrade of core site by new VGOS station	CAS - Chinese Academy of Sciences	2024
Tiannal3	31 N,	121 B	China	new VGOS station	CRS - Chinese Academy of Sciences	2024
Orumgi13	44 N,	88 E	China	upgrade of core site by new VGOS station	CRS - Chinese Academy of Sciences	2024
Matera	40 N,	16 E	Italy	upgrade of core site by new VGOS station	ASI - Italian Space Agency	2024
Matsihovi	60 N,	24 E	Finland	upgrade of core site by new VGOS station	FGI - Finnish Geodetic Institute	2024/2025
Hartebeesthoek	25 N,	27 E	South Africa	upgrade of core site by new VGOS station	SARAD - South African Radio Astronomy Observatory	2024/2025
Gran Canaria	28 N,	15 E	Spain	new VG05 station	IGN - Instituto Geographico National	2025/2026
Fortaleza	4 s, :	38 W	Brazil	upgrade of core site by new VGOS station	NASA - National Aeronautics and Space Administration	2025/2026
Flores	39 N,	31 W	Portugal	new VGOS station	GRA - Regional Government of Azores	20307
La Plata	35 s,	58 W	Argentine	upgrade of core site by new VGOS station	BKG - Bundesamt für Kartographie und Geodäsie	20307
Tahiti	17 S,	149 W	Tahiti	new VGOS station	CNES - Centre national d'études spatiales NASA - National Aeronautics and Space Administration	20307

Projects by institutes that are not yet part of IVS					
Location	Lat, Lon	Country	Type	Responsible Agency	Flanned Commissioning Date
Nuala Lumpur	4 N, 101 E	Malaysia	new VG05 station	UTM - University of Technology Malaysia	2025/2026
Chiang Mai	18 N, 99 E	Theiland	new VGOS station	NARIT - National Astronomical Research Institute of Thailand	2025/2026
Shongkhla	7 N, 100 E	Theiland	new VGOS station	NARIT - National Astronomical Research Institute of Thailand	2028
Kanpur	26 N, 80 E	India	new VGOS station	IIT - Indian Institute of Technology	20287
Jatiluhur	7 S, 107 E	Indonesia	Upgrade of radio telescope to VGOS station (7)	Institut Teknologi Bendung CRS - Chinese Academy of Sciences	20307
Timeu	10 S, 124 B	Indonesia	new VGOS station	Institut Teknologi Bendung CAS - Chinese Academy of Sciences	20307

UN-GGIM

United Nations Initiative on Global Geospatial Information Management

Positioning geospatial information to address global challenges

Future / Planned SLR stations

Table 1. Future ILRS Network Developments

Site Name	Туре	Agency	Timeframe
La Plata, Argentina	Upgraded core site	BKG, Germany	2024 - 2025
San Juan, Argentina	Upgraded SLR system	NAOC, China	2024 - 2025
Metsähovi, Finland	New SLR system	FGI, Finland	2024 - 2025
Greenbelt, MD, USA	Replacement core site	NASA, USA	2024 - 2024
Haleakala, HI, USA	Replacement core site	NASA, USA	2024 - 2026
McDonald, TX, USA	Replacement core site	NASA, USA	2024 - 2025
Ny Ålesund, Norway	New core site	NMA, Norway/NASA, USA	2024 - 2025
Ensenada, Mexico	New SLR site	IPIE, Russian Federation [*]	2024 - 2026
Java, Indonesia	New SLR site	IPIE, Russian Federation [*]	2024 - 2026
Gran Canaria, Spain	New SLR in core site	IPIE, Russian Federation*	2024 - 2026
Tahiti, French Polynesia	New SLR system	IPIE, Russian Federation [*]	2024 - 2026
Mt Abu, India	New SLR site	ISRO, India [*]	2025 - 2026
Ponmundi, India	New SLR site	ISRO, India [*]	2025 - 2026
Ishioka, Japan	New SLR site	Hitotsubashi U., NAOJ and	2024
		U. Tokyo, Japan	
Yebes, Spain	New SLR site	IGS, Spain	2024
Irkutsk (Tochka)	New SLR site	VNIIFTRI, Russia	2025 - 2026
Mendeleevo (Tochka)	New SLR site	VNIIFTRI, Russia	2025 - 2026

*Situation uncertain

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

Summary

- ITRF is fundamentally based on colocations: Strengthen ITRF parameters
- The origin (CM) of the ITRF needs improvement by a factor of 5.
- SLR & VLBI are critical for the frame definition : origin (SLR), scale (SLR & VLBI)
- SLR & VLBI collocations (~ 10 sites) are poorly distributed
- A number of SLR & VLBI instruments are old-generation systems
- Both networks need improvement, especially in the southern hemisphere
- Quantitatively : Data yield is poor for both techniques
- VLBI sparse sessions, with less than 10 stations in average
- Need to evolve toward more frequent global sessions, with increased number and well-distributed stations
- GNSS links together SLR, VLBI & DORIS networks
- More than 50 % of tie discrepancies are larger than 5 mm,
- Caused mainly by technique systematic errors

SCoG Geodetic Infrastructure Questionnaire 2019/2020 Summary of SLR & VLBI needs

# Instruments needed to fill the gaps in the network	# of additional Data Centers	# of additional Analysis Centers	New technology development
20	4	6	~\$200M
Cost for one	Total annual cost	Total annual cost	
instrument: ~\$8M	per center: ~\$250K	per center: ~\$600K	

Positioning geospatial information to address global challenges

United Nations Initiative on Global Geospatial Information Management

UN-GGIM

Many Thanks for their contributions

- ILRS and IVS
- Florent Deleflie (IMCCE, Paris)
- David Sarrocco (ASI, Italy)
- ITRF Team at IGN:
 - Arnaud Pollet
 - Xavier Collilieux
 - Paul Rebischung
 - Julien Barnéoud

United Nations Initiative on Global Geospatial Information Management

Positioning geospatial information to address global challenges