Enhancing food security through the use of biophysical, climate modelling and sensing technologies

Andries Potgieter

Overview

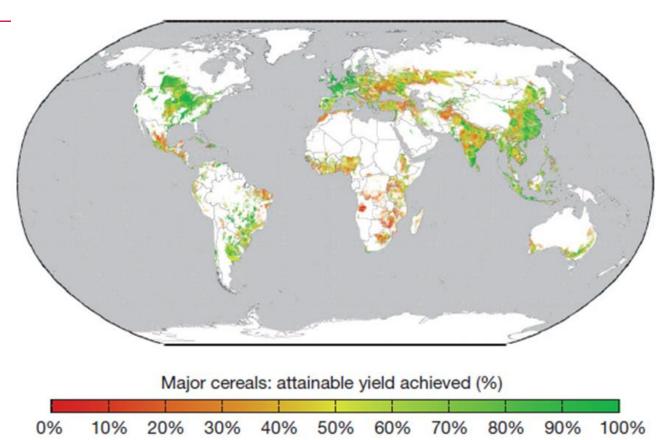
- The global picture
- Impact of climate variability on food security
- Biophysical modelling approach
- Predicting crop Yield, Area & Production
- Increasing the Lead-time of crop yield forecasts
- Crop yield prediction at Field and pixel scales

Food security

Significant advance in productivity needed to meet population growth and increased affluence of emerging economies

Opportunities via crop improvement and removing yield gaps but climate risks interfere

Is it possible to enhance productivity given existing and changing climate risks?

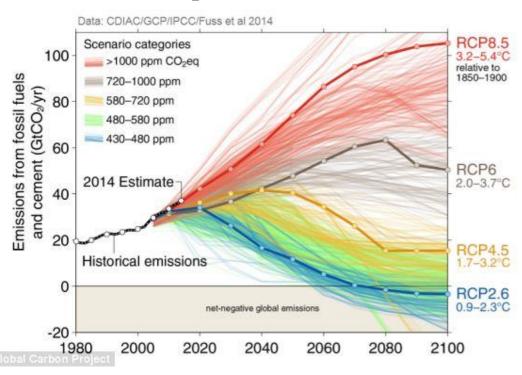


Average yield gaps for maize, wheat and rice Mueller et al (2012) Nature

Climate Risks

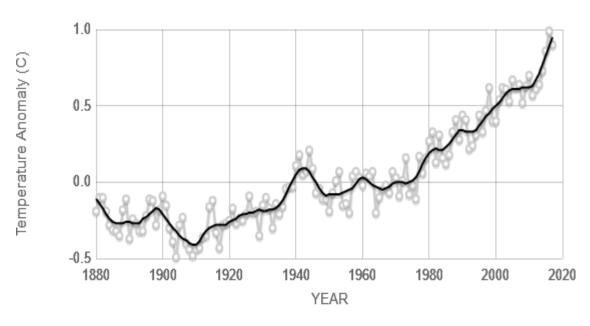
Climate trends introduce more uncertainty and reduce the relevance of experience CO_2 emissions and global temperature

Observed CO₂ emissions and future scenarios



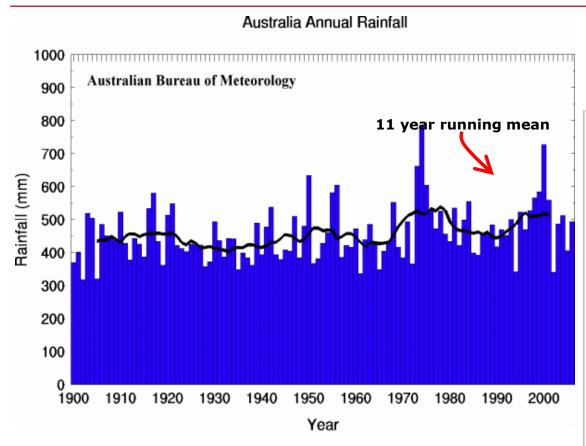
Update - 2017 estimate 36.8 Gt

Observed global temperature anomaly

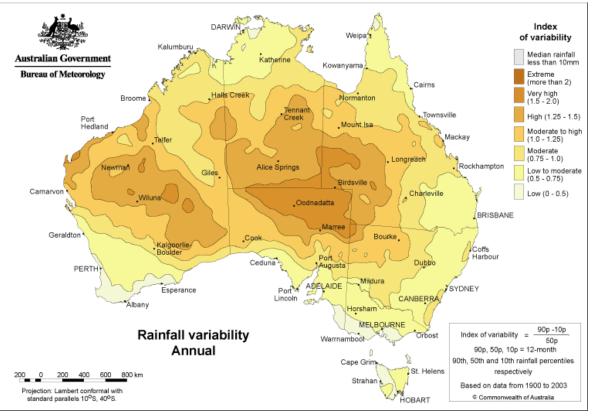


Source: climate.nasa.gov

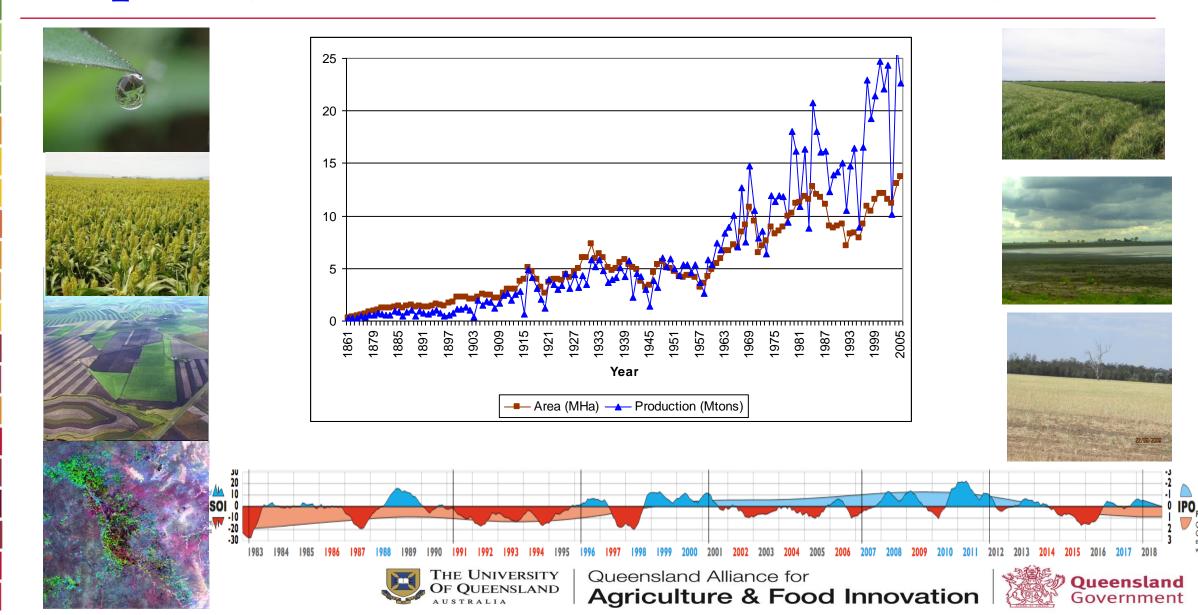
Climate variability - Australia



Huge variability at temporal & spatial



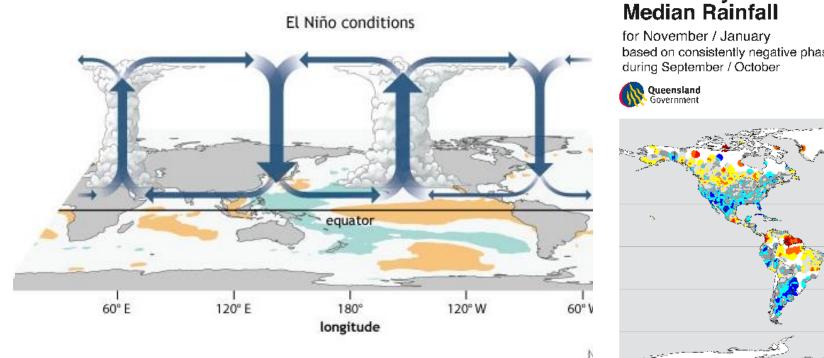
Impact (Economic, Natural & Social)

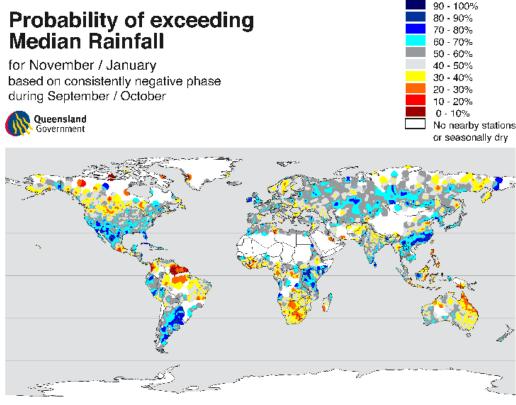


The Nature of Climate Risks

Seasonal climate variability components have some degree of predictability

I. ENSO and interannual

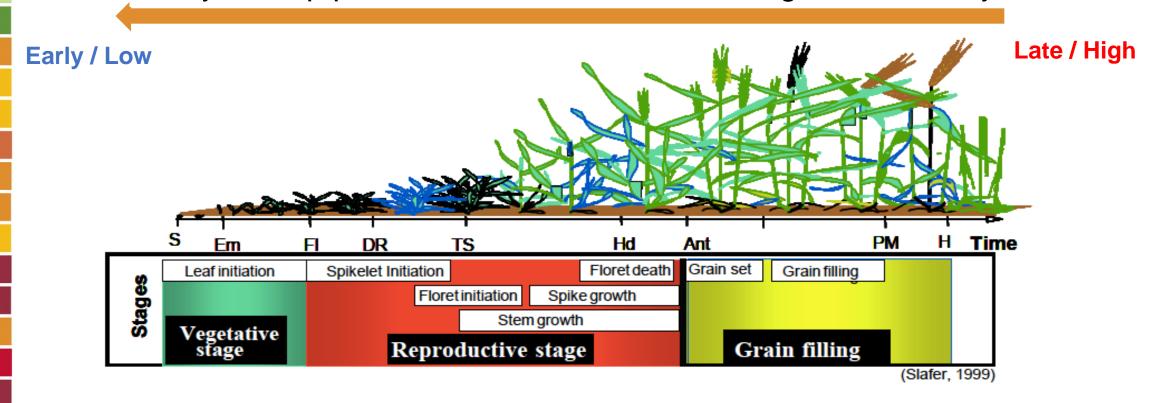




Stone et al (1996) Nature, 384

Utility

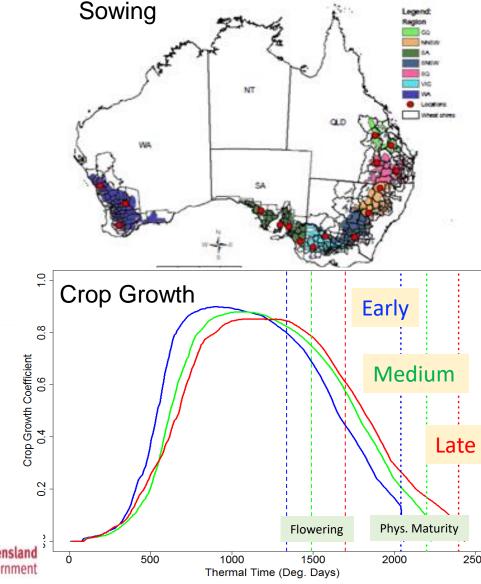
Utility of crop predictions is a function of timing and accuracy



Crop life cycle duration is closely associated with temperature

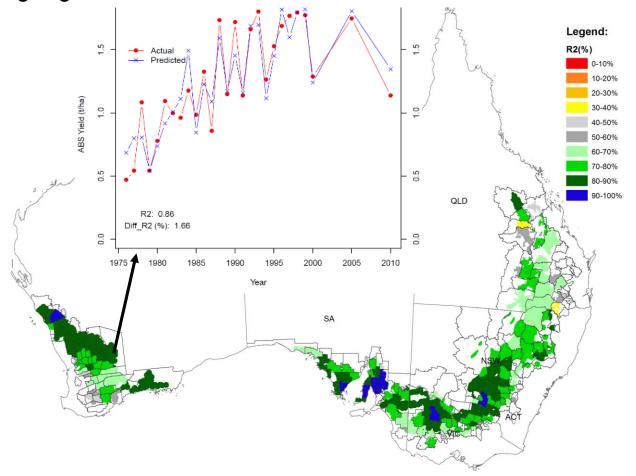
Biophysical Crop Modelling

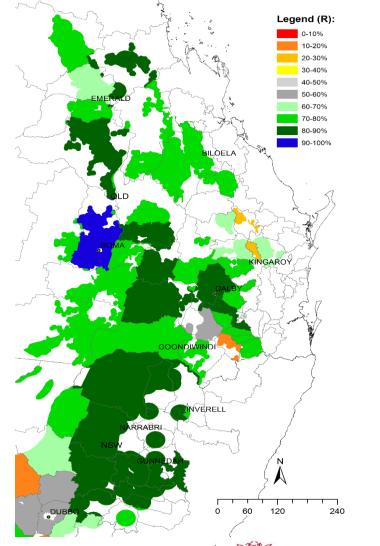
- Integrating climate prediction and biophysical modelling (1982-2001,2005, 2010 & 2015)
- Developed wheat & sorghum models:
 Yield = f(Year, Stress Index)
- SI simulated daily at weather station level driven by thermal time & aggregated to shire
- Models are trained on actual shire scale data
- Model does not account for pest, diseases and losses due to extreme events (e.g. floods, heat wave)



Validation

Significantly high correlations across Australia wheat & sorghum cropping region

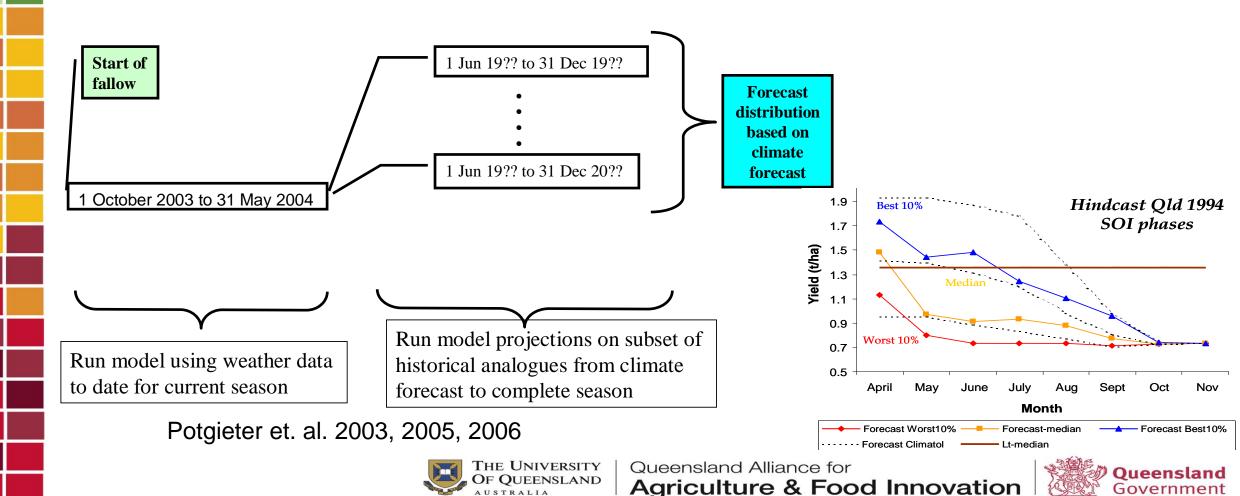




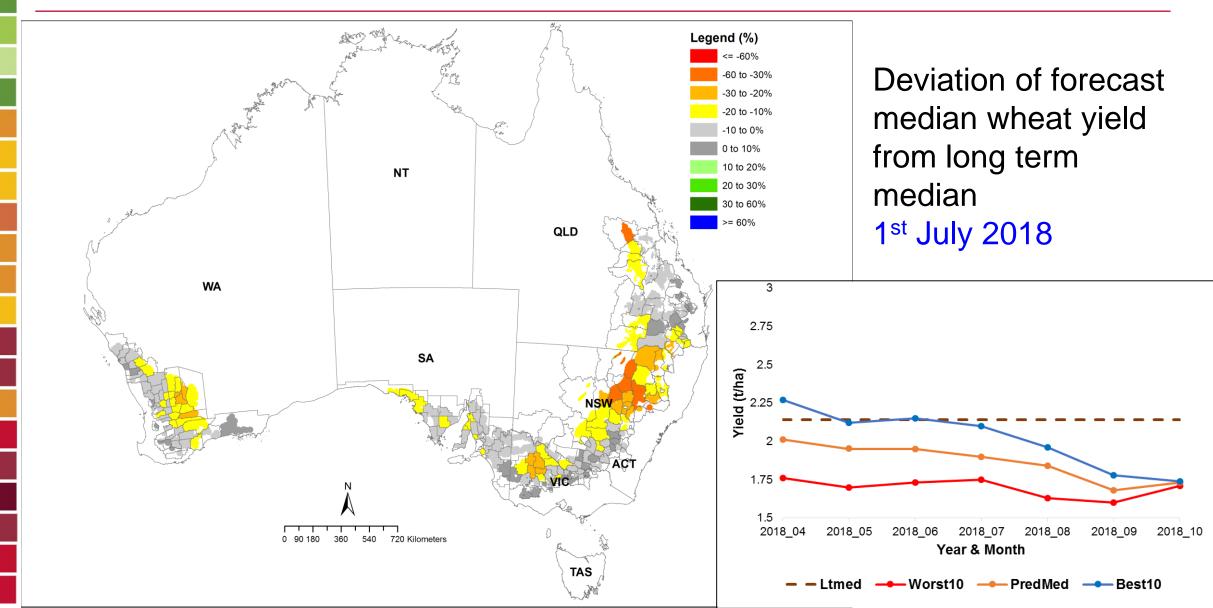
Queensland Alliance for Agriculture & Food Innovation

Operationally

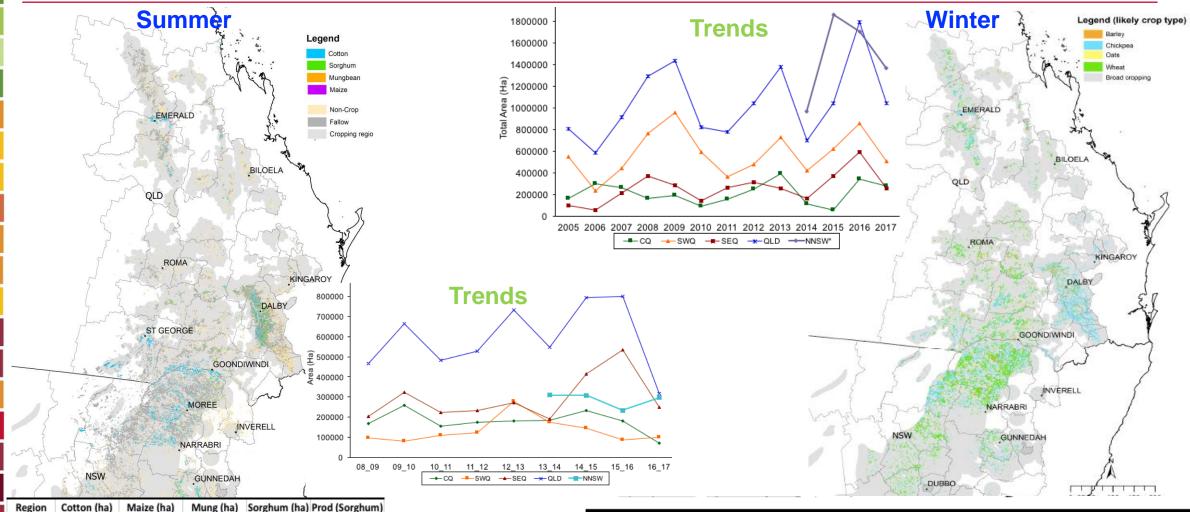
Generating Yield Forecast Data Plumes – Climate Forecast Set (e.g. at 1 June 2004)



Predicting crop yield at regional and national levels



Crop Area, Trends & Production

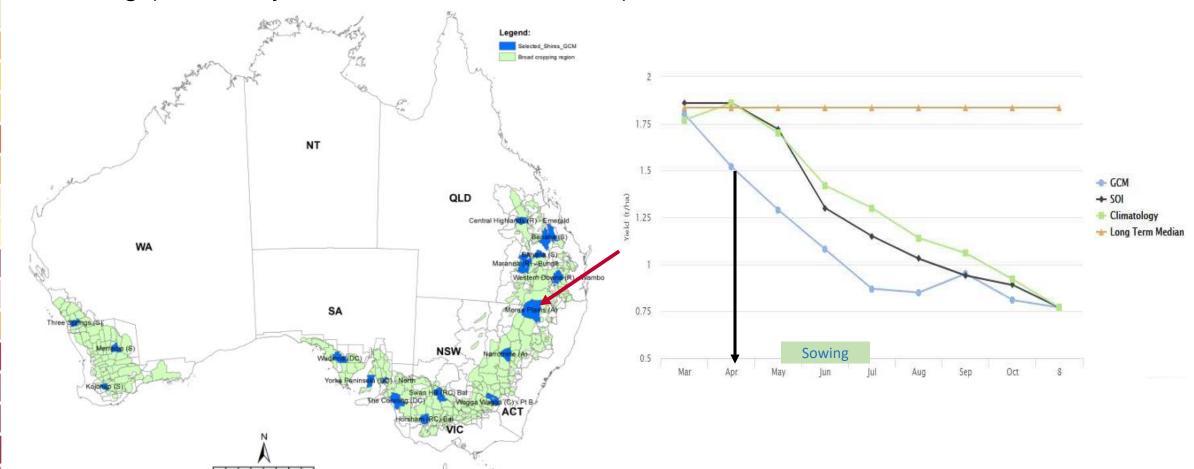


Region	Cotton (ha)	Maize (ha)	Mung (ha)	Sorghum (ha)	Prod (Sorghum)
CQ	59,531	4,269	4,085	2,135	4,821
SEQ	90,718	12,896	97,507	47,018	162,877
SWQ	79,156			21,477	51,954
NNSW	263,245		10,436	40,379	195,394
Total	492,650	17,166	112,027	111,009	415,046

Region	Barley (Ha)	Chickpea (Ha)	Oats (Ha)	Wheat (Ha)	Total (Ha)	Prod (wheat-Tons)
CQ	33,468	182,036	827	125,047	341,377	267,720
SEQ	53,911	484,218	na	51,364	589,493	115,910
SWQ	89,103	326,042	39,961	401,501	856,607	750,791
NNSW	73,286	710,823	na	914,880	1,698,989	2,472,133

Long-lead crop yield forecasting

 Current research shows high potential to predict crop yields well before sowing (funded by Queensland Government)

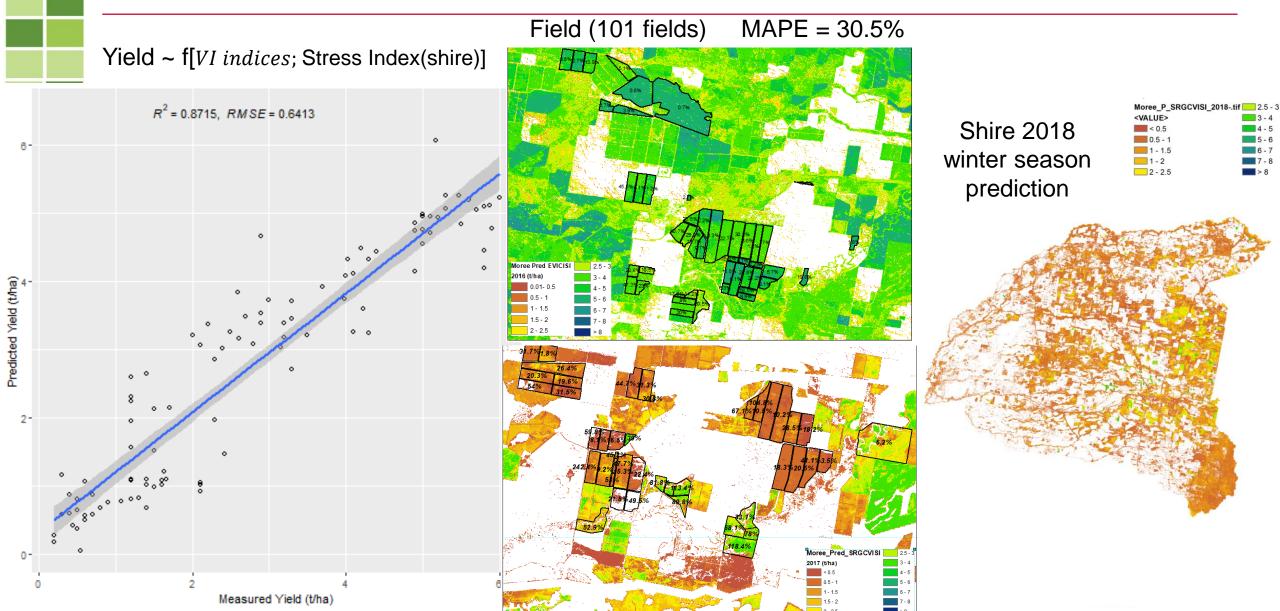


Downscaling of climate: Dr Andrew Schepen (CSIRO)

Government

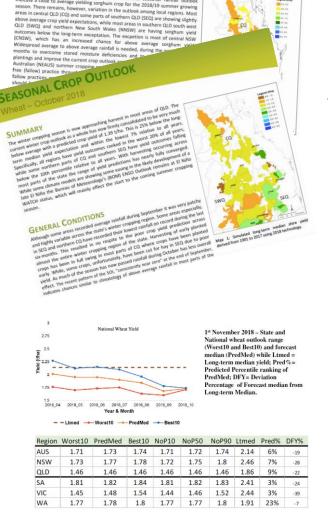
Predicting crop yield at field & pixel scales

Sentinel 2 satellite (10m pixel); Model: Using indices relating to canopy structure and Chlorophyll



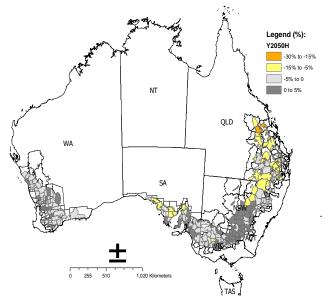
Applications

- National and state level crop outlooks (monthly)
- Impact analysis of climate change and variability
- Production and resource risk management
- Exceptional circumstances
- Insurance against crop losses due to in-season water stress
- Land use & Resource planning

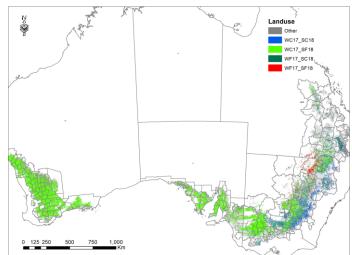


SEASONAL CROP OUTLOOK

orghum: November 2018



Potgieter et. al. 2003, 2005, 2006 & 2013



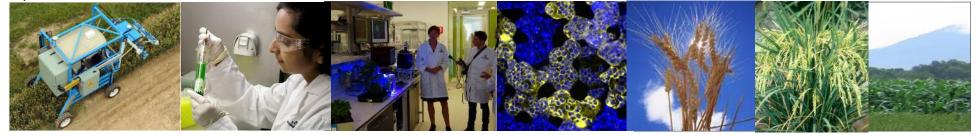
Take Home Message

- Climate risk and change is already built into the system
- Australian producers are excellent risk managers within the world's most variable climate and without subsidies
- Developed world-leading models that integrate biophysical crop models, climate prediction and earth observation technologies
- Enhanced decision making on land use and resource management
- Enabling fore-warning of extreme events; well before sowing and flowering
- Leading to more sustainable and resilient crop production systems & agri-businesses

Thank you

Contributors:

James Watson, Mark Eldridge, Barbara George-Jaeggli, Kenneth Laws, Greg Mclean, Colleen Hunt, Andrew Borrell, Emma Mace, Scott Chapman, David Jordan, Graeme Hammer, Andrew Schepen, Jason Brider, Yan Zhao



This project is jointly supported by the Department of Agriculture and Fisheries and

