

Definition of Geomatics (ISO,1996)

- "Geomatics is a field of activity which, using a systematic approach, integrates all the means used to acquire and manage spatial data required as part of scientific, administrative, legal and technical operations involved in the process of production and management of spatial information. These activities include, but are not limited to, cartography, control surveying, digital mapping, geodesy, geographic information systems, hydrography, land information management, land surveying, mining surveying, photogrammetry and remote sensing."
- "Geomatics is the modern scientific term referring to the integrated approach of measurement, analysis, management and display of spatial data."

New definition of Geomatics in big data era

• Geomatics in big data era is a multiple discipline science and technology which, using a systematic approach, integrates all the means for spatiotemporal data acquisition, information extraction, networked management, knowledge discovering, spatial sensing and cognition, as well as intelligent location based services of any physical objects and human activities around the earth and its environment.

The future of Geomatics

- 1. Full automation;
- 2. Real time services;
- 3. From earth observation to human observation.

Automatic 3D construction of Maya Ruins using non-metric Camera

Modeling using Mobile Phone (Huawei)

Collected using Huawei Mobile Phone, 11 images to create model

Three Dimensional Automatic Modeling from Outdoor to Indoor

Concept of EOB

- The human brain obtains information of the surrounding environment by visual, auditory and other functions. Then the information is transmitted to the left and right hemispheres using the neurons. The left and right hemispheres analyze the surrounding environment information, thus guiding people's behavior.
- EOB can achieve on-board sensing, cognition and transmitting the right data, information and knowledge to the end user in real time .

Strike	Statistics Statistis Statistis Statistis																			
	Liss Liss <thlis< th=""> Liss Liss L</thlis<>	99%) ×10	963 (1999)	80 MININA 1501T	economication e 40%	120		527/62 40% 50%		75/159	101,00% 101	0/2 10 10 40%		1				Person		
3.3.5.6.3.8.20 TOA MULCURE PHENDARY TOA MULCURE PHENDARY TOA			御州古道:北加級 2240 	(1)e 533	ian 358	±m≑#1				4407003				1						
Windows U.L. Bit TT Lobart State D <thd< t<="" td=""><td>цатот Line <thline< th=""> Line Line <t< td=""><td></td><td>当天的清闲禄 5103 不提出的清庆禄 3</td><td>РФА 530</td><td>942.0467 619</td><td>n Mizika O</td><td></td><td></td><td></td><td></td><td>m in Africa</td><td>s 12 en</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thline<></td></thd<>	цатот Line Line <thline< th=""> Line Line <t< td=""><td></td><td>当天的清闲禄 5103 不提出的清庆禄 3</td><td>РФА 530</td><td>942.0467 619</td><td>n Mizika O</td><td></td><td></td><td></td><td></td><td>m in Africa</td><td>s 12 en</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thline<>		当天的清闲禄 5103 不提出的清庆禄 3	РФА 530	942.0467 619	n Mizika O					m in Africa	s 12 en								
			ム決決行の新 6988 10月2年15日 6703	RLJ 865	केलेग 1278	ia.062 207														
NEX.029 PALLOR POLICION 12.402.9833 THE LOR POLICION 12.402.98333 THE LOR POLICION 12.		96% - 412	安斯行李紀母日7800000 历史平均心7500000	65000h	04-311批判 1 1300万	/4.111-116 780万										(II) the sector	40		1412B	
#361797.0 © Concentration #361797.0 #36578 #45578 #45578 100 #8578 100 100 #8578 100 1	PRENEW DDD DDD 4557 4457 4577 5570 44577 5570 44577 5570 44577 5570 44577 5570 44577 5570 44577 5570 61571 5000 61571 5		%上业局小型公共12402953 (0.02平均图1240200	联曲计译 F 85.0%	初本11回位	91.0%														
	Columnation TA::::::::::::::::::::::::::::::::::::		a (Containe an Containe 1752 Auth		THE CALL	2070 72.73% 21550 51.22%	anna anna	51509 04.01% 6 83.25%	1275642	45578 02.2% 1943 87.52%	arnella arnella	68 00.10% 36 85.23%	Same -	140 96.13% 37 95.16%	State of the second	18339 02.14% 20 89.54%		1140 280 7608452 1802738		240892
	田田市																			
							全市到从													

<section-header> Smart Emergency Brain of Wuhan Traffic Management In 2017, in the national ranking of traffic congestion, the system improved Wuhan from 23 to 53. In Oct. 2017, using "7 quick model", the system minimized traffic congestion accident handling time from 7 minutes to 90 seconds. On 11th Dec. 2017, Keqiang Li, the Prime Minister of P. R. China, spoke highly of the system after watching its operation.

Conclusion

1. The ubiquitous space-air-ground sensors will produce unprecedented big spatio-temporal data;

2. Facing the situation of "mass data, less information, lack of knowledge", the integration of big geospatial data, cloud computing and Al techniques should be very important;

3. The integration of earth observation and human observation is helpful to answer the human-nature relation.

Satellite LJ-1 Series PNTRC

Wuhan University launches the Satellite LJ-01 to verify PNTRC thought

- Satellite LJ-1A
 - ✓ The first professional night light remote sensing satellite in China has a pioneering significance for the development of China's luminous remote sensing satellite and the application of remote sensing in the social and economic fields.
 - ✓ The LEOS-based navigation enhancement , the first test in the world. The test results are of great significance to the follow-up construction of the Beidou System in China. It is possible to lay aside the need for building global stations in foundation reinforcement.
- Satellite LJ-1B
 - ✓ Multi-angle radar remote sensing , the first test in the world. The test results are of great significance to the development of radar satellite and radar mapping in China.
 - ✓ Video radar remote sensing , the first test in the world. The test results are of great significance to the application and innovation of moving target detection and tracking.
- > Satellite LJ-1C
 - sensor to shooter, the first test in China. The test results are of great significance to the consumption level application. LJ-1C will send the real time 0.5 resolution video image directly to the end user's Smartphone.

Main technical parameters of Satellite LJ-1A

	Track Type:	sun synchronous orbit
	Orbit Height :	645 km
	Ground Pixel Resolution	n: 130m@650km(sub-satellite point)
	Imaging Spectrum:	480nm~800nm
	Ground Bandwidth:	250km×250km@650km
	Imaging Mode:	night light mode + day light mode
	Maneuverability:	elevation axis > 0.9° /s
	Three Axis Attitude Sta	bility: batter than 0.1° s
	Attitude Determination	Accuracy: batter than 0.05°
	Total Satellite Mass:	22kg
xe .	On Orbit Envelope Size	e: 520mm × 870mm × 390mm
	Measurement and Cont	rol: UHF measurement and control system, distinct
	transmission mode	
	Data Transmission:	X band, 50Mbps
	Design Life:	6 months

<section-header><image><image>

Satellite LJ-1B

Wuhan University and Beijing Institute of Spacecraft System Engineering(ISSE) have being jointly developed the satellite LJ-1B, a Chinese scientific experiment SAR satellite, which has some new imaging functions, such as multi-angle imaging and video imaging.

Incidence

angle (°)

15

15 15

15-25

0

Za	Imaging mode	Azimuth resolution (m)	Range resolution (m)	Azimuth width (km)	Range swath (km)	Azimuth scanning angle(°)
	Multi- angle imaging	1	1	1.5	8	-45~45
Xa	Video imaging	3	3	1.5	8	-15~15
	Spotlight imaging	0.5	0.5	1.5	5	-
Y Y	Strip imaging	3	3	Depende nce on imaging time	8	-
	Star point imaging	2	0.8	7	-	-

Satellite i	ma	gir	١g	m	od	e							
Spotlight imaging		PRF (Hz)	Width(K	Look m) Angle (deg)	Beam Angle (deg)	Incidenc Angle (deg)	Xe Azi. Res	. Range Res (m)	Band Width (MHz)	Average Power (W)	NEsigma((dB)	Data Rate (8:3) (Mbps)	
	Spotlight inaging	7150.00	5.43	15.31	0.81	16.55	0.5	0.44	900	520	-27.57	2009.14	
Strip imaging		PRF (Hz)	Width (Km)	Look Angle (deg)	Beam Angle (deg)	Incidence Angle (deg)	Azi. Res. (m)	Range Res. (m)	Band Width (MHz)	Average Power (W)	NEsigma0 (dB) (beam center)	Data Rate (8:3) (Mbps)	
	Minimum beam position	6850.00	7.67	15.33	0.81	16.56	3	2.63	200.00	452.31	-27.63	577.10	
	Central beam position	7150.00	8.19	20.33	0.81	22.00	3	2.67	150.00	463.45	-27.40	541.31	
标准条带模式	Maximum beam position	7180.00	8.91	25.33	0.81	27.47	3	2.71	120.00	483.50	-27.12	520.06	

