1. Introduction

Names of China Navigation Satellite System

Compass
Before 2014

BeiDou
The big dipper
Charles's Wain
After 2014
1. Introduction

Why Compass?

- Battle between Huangdi (黃帝) vs Chiyou (蚩尤), 2697 before Christ (compass was invented)
- Huangdi’s army lost their direction, a Fairy clued to Huangdi that Compass could direct the South, thus compass which uses the magnetism property directing the earth poles (poles not included) was invented
- Compass was named as the China’s navigation satellite system

Orientation by the Big Dipper (Chinese worship the Big Dipper)

- Many beautiful legend left to Chinese by Charles’s Wain (or the Big Dipper, Triones—BeiDou)
- The Big Dipper not only tells us direction but also the seasons.
 - 赘鸚黃 昴 : dipper handle directs east—spring; south—summer; west—autumn; north—winter
- What can China BeiDou do?—PVT+Orientation

- BeiDou satellite navigation system can do much more!
1. Introduction

Compass in ancient China

- Qin & Han Dynasty: Traffic among China, Korea & Japan on the sea
- Sui & Tang Dynasty: Trade btw China & Arabian countries
- Song dynasty: Chinese ships on Pacific & Indian Ocean
- Early Ming dynasty: Navigator, He ZHENG voyaged down the western seas seven times

Compass and BeiDou orientation were very important tool for navigation

2. BDS-1 and BDS-2

1st step: BeiDou demonstration system

- Provide positioning, timing and short message communication from 2003
- Service area: 70°-140°L; 5°-55°B
- Positioning precision: <20m, timing precision<100ns
- Short message communication: 120 Chinese characters/time
2. BDS-1 and BDS-2

- 2nd step: Regional navigation system

14 satellites: 5 GEO, 5 IGSO, 4 MEO

Service area: -55°~55°B, 55°~180°L

3. BDS-3 new design and service

3.1 Basic design of BDS-3

- Started from Sep., 2016
- Constellation: 30 satellites with 3GEO, 3IGSO and 24MEO satellites
- Whole system construction will be finished in 2020
- 19 satellites are on orbit (now)
3. BDS-3 new design and service

3.1 Basic design of BDS-3—coordinate reference

- Coordinate reference of BDS-3 is consistent with ITRF, called BDSC.
- a=6378137m, the same as that of GPS, different from GLONASS or Galileo.
- Flattening f=1/298.257222101, different from that of other GNSS, GM is also different from other GNSS.
- BDSC of BDS-3 updates yearly, by using multi-GNSS receiver to tracking BDS and other GNSS.
- Employ the integrated adjustment of the tracking data and measurements of ITRF stations.

52 IGS stations (3 domestic stations) with BDS/GPS receivers were used to calibrate the BDSC (2018.4-2018.5)

Repeatability in N, E & U are 0.77cm, 0.80cm & 1.17cm respectively.

Translations btw BDSC and ITRF are -2mm, 4mm & -8mm respectively.
3. BDS-3 new design and service

3.1 Basic design of BDS-3---System time

- BeiDou time (BDT) is aligned to UTC indirectly, first aligned to NTSC (national time service center), then UTC
- GNSST may be a choice in the future
- A unified China time system is in construction, by connecting all time keeping centers in China

BDT is in improving by adding new clocks
- Stability accuracy are improving

---System time

3. BDS-3 new design and service

3.1 Basic design of BDS-3---Service and design target
3. BDS-3 new design and service

3.2 Signals of BDS-3

<table>
<thead>
<tr>
<th>Service type</th>
<th>Signal frequency</th>
<th>Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNSS</td>
<td>Open</td>
<td>B1I, B3I, B1C, B2a, B2b</td>
</tr>
<tr>
<td>Authorized</td>
<td></td>
<td>B1A, B3Q, B3A</td>
</tr>
<tr>
<td>SBAS</td>
<td>Open</td>
<td>B1C, B2a</td>
</tr>
<tr>
<td>Authorized</td>
<td></td>
<td>B1A</td>
</tr>
<tr>
<td>Regional message communication services</td>
<td>Authorized</td>
<td>L(uplink), S(downlink)</td>
</tr>
<tr>
<td>(RMCS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global short message communication services</td>
<td></td>
<td>L(uplink), B2b(downlink)</td>
</tr>
<tr>
<td>International SAR service</td>
<td></td>
<td>Uplink: 406MHz</td>
</tr>
<tr>
<td>Transmission of precise positioning</td>
<td></td>
<td>B2b</td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. BDS-3 new design and service

3.3 Inter-satellite links

- Inter-satellite links (ISL) with Ka phased array and laser are added in BDS-3 satellites
- to solidify relative position of whole constellation and improve the orbit determination accuracy
- to help time synchronization
- to strengthen Search & Rescue
- to improve efficiency and reliability of short message communication
- to carry out autonomous orbit determination (AOD)
3. BDS-3 new design and service

3.4 Message communication service (MCS) of BDS-3

- MCS of BDS-3 is divided into regional message communication service (RMCS) (via GEO) and global short message communication service (GSMCS) (MEO)
- RMCS: 1000 Chinese characters per time for users in China & surrounding area; communication volume is extended by 10 times, while transmit power is only 1/10 (compared with BDS-2); supports mobile phones
- GSMCS: provided by 14 MEO & ISL with 40 Chinese characters per time (location report, emergency SAR)
3. BDS-3 new design and service

3.5 PPP service of BDS-3

- Precision point positioning (PPP) service will be provided by 3 GEO via B2b (China & surrounding areas)
- Orbit, clock bias corrections, differential code biases & other parameters will be broadcasted (dual-frequency positioning possible, ionospheric free)
- Regional PPP users can get decimeter-level kinematic positioning and centimeter-level static positioning results after 20-30 minutes for convergence

3. BDS-3 new design and service

3.6 Satellite Based Augmentation (BDSBAS)

- BDSBAS follows ICAO standards and SARPS
- Service area: China and surrounding area
- Service satellite: 3 GEO (80° E, 110.5° E & 140° E)
- Service frequency: SBAS-B1C, SBAS-B2a
- Augment object: Four constellations (BDS at first)
- Service mode: SFDC and DFMC, meet the requirements of precision approach phase CAT-I of international civilian aviation
3. BDS-3 new design and service

3.7 Global SAR of BDS-3

- BDS SAR follows the related standards of IMO, and will provide free SAR service with other COSPAS SAR satellite constellations for global voyage, aviation and land users
- 6 MEO satellites (on 3 orbit planes) mounted with SAR device will provide reliable distress alarm service to global users

Main functions of the research and rescue are nearly the same as international SAR service

3.7 Global SAR of BDS-3

Two differences of BDS SAR from the standard SAR service
- Return link
- Inter-satellite link

Return links are designed in BDS SAR for improving the SAR efficiency and success rate, by which the users do not need to repeat call for help
- Inter-satellite links helps to improve communication efficiency between SAR center and rescue
- Laser links will help much more
4. Preliminary performance of BDS-3

- Domestic tracking stations and iGMAS
 - Evaluation by OCS of BDS with domestic tracking stations
 - Evaluation by international GNSS Monitoring System (iGMAS)
 - Evaluation content
 ✓ Satellite clock
 ✓ Satellite orbit
 ✓ SISRE
 ✓ ...

4. Preliminary performance of BDS-3

- Orbit accuracy of the simplest BDS-3 constellation (8 sat)

<table>
<thead>
<tr>
<th>Satellite</th>
<th>R</th>
<th>T</th>
<th>N</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C19</td>
<td>0.103</td>
<td>0.563</td>
<td>0.584</td>
<td>0.823</td>
</tr>
<tr>
<td>C20</td>
<td>0.105</td>
<td>0.53</td>
<td>0.43</td>
<td>0.691</td>
</tr>
<tr>
<td>C21</td>
<td>0.163</td>
<td>0.709</td>
<td>0.667</td>
<td>0.984</td>
</tr>
<tr>
<td>C22</td>
<td>0.184</td>
<td>0.648</td>
<td>0.729</td>
<td>0.997</td>
</tr>
<tr>
<td>C27</td>
<td>0.207</td>
<td>0.579</td>
<td>0.676</td>
<td>0.913</td>
</tr>
<tr>
<td>C28</td>
<td>0.217</td>
<td>0.586</td>
<td>0.567</td>
<td>0.842</td>
</tr>
<tr>
<td>C29</td>
<td>0.252</td>
<td>0.909</td>
<td>1.502</td>
<td>1.767</td>
</tr>
<tr>
<td>C30</td>
<td>0.312</td>
<td>0.971</td>
<td>1.195</td>
<td>1.574</td>
</tr>
</tbody>
</table>

Radial: 0.1-0.3m; Tangential: 0.5-1.0m; Normal: 0.4-1.5m
4. Preliminary performance of BDS-3

- Satellite clock error of the simplest BDS-3 constellation
 - Satellite clock errors are averagely 1-2ns
 - Apparent disturbances are observed on certain satellites in certain period of time. Hydrogen clocks are very stable

<table>
<thead>
<tr>
<th>Clock accuracy</th>
<th>Satellite</th>
<th>RMS</th>
<th>Satellite</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C19</td>
<td>1.951</td>
<td>C27</td>
<td>1.078</td>
</tr>
<tr>
<td></td>
<td>C20</td>
<td>0.995</td>
<td>C28</td>
<td>0.861</td>
</tr>
<tr>
<td></td>
<td>C21</td>
<td>0.812</td>
<td>C29</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>C22</td>
<td>1.124</td>
<td>C30</td>
<td>1.319</td>
</tr>
</tbody>
</table>

- Next generation satellite rubidium clocks or cesium clocks will be more accurate and stable

4. Preliminary performance of BDS-3

- Main results
 - 3D RMS of overlapping orbit differences
 - RS: 1m
 - GS: 0.5m
 - RS + ISL: 0.5m
 - GS + ISL: 0.3m
 - 3D orbit accuracy of BDS-3 satellites after 24h prediction
 - RS: 2.03m
 - RS + ISL: 0.73m
 - GS: 0.93m
 - GS + ISL: R: 0.09m; T: 0.53m; N: 0.11m
 - GS+ISL: 3D: 0.56m
4. Preliminary performance of BDS-3

- **SISRE of the simplest BDS-3 constellation (domestic)**

 User ranging error sequence

 User ranging error (m)

<table>
<thead>
<tr>
<th>Satellite</th>
<th>RMS</th>
<th>Satellite</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C19</td>
<td>0.645</td>
<td>C27</td>
<td>0.375</td>
</tr>
<tr>
<td>C20</td>
<td>0.342</td>
<td>C28</td>
<td>0.383</td>
</tr>
<tr>
<td>C21</td>
<td>0.301</td>
<td>C29</td>
<td>0.373</td>
</tr>
<tr>
<td>C22</td>
<td>0.420</td>
<td>C30</td>
<td>0.652</td>
</tr>
</tbody>
</table>

 - SISRE are averagely 0.4-0.5m at domestic tracking stations
 - Note: SISRE of GPS and BDS-3 are seemingly equivalent, but the former is the global average accuracy, while BDS-3 mainly monitored in China

4. Preliminary performance of BDS-3

- **URE of the simplest BDS-3 constellation (iGMAS)**

 BDS 2018/1-7 (95%)

 Compare to other GNSS

 - iGMAS monitoring results:
 - Radial orbit accuracy: 0.4m;
 - Satellite clock accuracy: 0.7m (2.2ns);
 - SISRE: about 2m
5. Conclusions

- New designs of BDS-3 will improve service functions
- The signal accuracy of BDS is comparable to other GNSS signals
- Orbit accuracy determined by ISL + regional tracking stations achieves about 0.5m, nearly achieves the results of global tracking stations
- Regional and global message communications will help the management of sea fishing and transportation as well as search and rescue
- Regional PPP and BDSBAS are embedded in BDS-3
- Whole constellation will be established in 2020 with 30 satellites, global PNT service will be provided
- BDS-3 will be available and helpful for ITRF
Thanks !