

Main Contents 1 Introduction 2 Methodology 3 Result & analysis 4 Applications 5 Conclusions

Main Contents

- Introduction
- 2 Methodology
- Result & analysis
- 4 Applications
- 5 Conclusions

1 Introduction

□ Why?

- statistical information on socio-economic activities is widely available,
- aggregated to country or regional administrative units,
- useful for assessments,
- smooth out spatial variations in impact
- □ Definition Spatial disaggregation are processes by which information at a coarse spatial scale is translated to finer scales, while maintaining consistency with the original dataset [Monteiro et al. 2018].
- □ **Objective** Provide more localized estimates and spatial analysis.

An example of Deqing **Population** Name (town) 89944 Wukang Administrative district map of Deqing 26008 Xiazhuhu 23999 52180 Wuyang Luoshe 20553 43856 Zhongguan Moganshan 31643 49644 Qianyuan Leidian 37592 Xinan 31730 Xinshi 72395 Yuyue 33297

Disaggregation without Geospatial Information

In early stage, as lack of auxiliary data related to population,

Negative Index Model [Feng & Zhou 2003; Wu & Gao 2010], Nuclear Density Estimation Model [Lu et al. 2002; Yan et al. 2011], etc were often used.

- Principle (urban geography) population density decreases from the city center to the periphery.
- Advantages simple model, simulation of continuous population distribution; suitable for large and medium-sized cities population density simulation.
- Insufficiency The value of city center and bandwidth τ is subjective, not suitable for small cities and rural areas.

Spatial information used for disaggregation

Recently, various types and resolutions of population-related auxiliary data can be obtained, such as:

- land cover,
- traffic network
- DEM,
- water system,
- night lighting,
- OSM,
- · mobile phones,
- •

Many population data disaggregation methods have been developed, *which can be dividide into 4 categories*:

Existing methods for disaggregation with spatial information

- Dasymetric mapping method
- Regression method
- Multi-factor synthesis method
- Spatio-temporal simulation method

A comparative analysis of existing disaggregation methods

1110 1110 110							
Types	Related factors	Advantage	Disadvantage				
1.Dasymetric mapping (Bi-d [Holt et al. 2004; Langford 2007]; Tri-d [Mennis 2003; Lloyd 2016]; Multi-d [Su et al. 2010])	Population, types of land cover, Topography, traffic network, impervious surface, etc.	Model simple & easy, ensures the total population unchanged, suitable for fine- scale population spatialization.	Difficult accurate determine the weight of population allocation in each sub-area.				
2. Regression method [Zhuo et al. 2005; Gallego et al. 2011; Malone 2012; Lu et al. 2015; Rosina et al. 2017]	The area of all types of land , and corrected by DEM, residential spots, night lighting, OSM data.	model needs fewer parameters, is easy to model, results are controllable. suitable for large scale population spatialization.	difficult to reveal the difference of population distribution under the same land type, and limited by the problem of light pixel overflow.				
3. Multi-factors synthesis [Dobson et al 2000; Liu et al. 2003; Yue et al. 2003; Liao et al. 2010; Yao et al 2017; Monteiro 2018]	Population, land use, water factors, transportation network, River system, DEM, city size and location, residential areas, etc.	Comprehensive consider - ing the influence of natural, economic and social factors, The results of the model are convincing.	The fusion weight is more subjective, and the index is changeable, which increases the complexity and redundancy of the model.				
4. Spatio-temporal simulation [Deville et al. 2014; Bakillah 2014; Lwin et al. 2016; Chen et al. 2018]	Demographic data, mobile location data (i.e. cell phone), etc.	suitable for describing spatial dynamic distribution of population in urban areas, and can estimate the permanent population	Poor results in country rural & poor areas.				

Strategy for disaggregation in this study According to: > the area distribution of Deqing County, > High-resolution land-cover data, > population statistics (in towns), Dasymetric & area weighting method will be adopted.

Main Contents Introduction Methodology Result & analysis Applications Conclusions

Classification scheme of building density

By the density and height of buildings in residential areas, it will be divided into 6 types[according to the "Survey Contents and Indicators of Geographical Conditions" (No.GDPJ 01—2013)]:

Types	description	Building density	Number of floors
H-M	High density & Multi-floor building	≧50%	≧4
L-M	Low density & Multi-floor building	< 50%	≧4
H-L	High density & Low-floor building	≧50%	< 4
L -L	Low density & Low-floor building	< 50%	< 4
M-S	Multi-floors & Single building		≧4
L-S	Low-floors & Single building		< 4

Weight determination for disaagregation

• The weight *p* of a resident cell is

$$p = \lambda \times h$$

 λ - building dentisy in a resident cell;

h – the average of all building floors in a cell.

• The population *n* of a resident cell is

$$n_i = \frac{S_i p_i}{\sum_{i=1}^m S_i p_i} N$$

s- area of a resident cell;

N – the whole population number in a administrite unit.

Main Contents				
1 Introduction 2 Methodology 3 Result & analysis 4 Applications 5 Conclusions				

Main Contents

- **Introduction**
- 2 Methodology
- Result & analysis
- 4 Applications
- 5 Conclusions

Quantitative assessment of SDGs indicators

- Indicator 3.8.1- coverage the basic health services;
- Indicator 4.a.1- allocation of educational resources;
- Indicator 9.1.1- urban traffic
 - a. The proportion of rural population living within 2 km of the whole season highway;
 - b. Traffic accessibility;
 - c. X hour life circle

Appl. -Indicator 9.1.1

• SDGs-Indicator 9.1.1-

- a. The proportion of rural population living within 2 km of the whole season highway;
- b. Traffic accessibility;
- c. X hour life circle

Tab. Proportion of population from X km to the road

Indictor name	2014	2015	2016	2017	2018
The proportion of rural population living within 500 meters	99.997%	99.997%	100%	100%	100%
The proportion of rural population living within 1000 meters	100%	100%	100%	100%	100%
The proportion of rural population living within 2000 meters	100%	100%	100%	100%	100%

5 Conclusions

Populations, aggregated to a town administrative units in this study, is disaggregated to 30m×30m cell by spatial information. The main objective is to assess some SDGs indicators with a fine quantitative mode and spatial analysis.

- □ Dasymetric area weighting method is used in this research, in which Dasymetric mapping is by high resolution land-cover data and area weighting by 3D building information.
- □ Through the sample (50 villiges) validation, the average accuracy is about 77.4%.
- □ As a case study of Deqing, quantitatively assess some SDGs indicators, such as health care (3.8.1), education(4.a.1), urban traffic (9.1.1), and accessibility analysis.

