SOME EXAMPLES OF STATISTICAL-GEOSPATIAL INTEGRATION FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2017-2021 UN-GGIM Strategic Framework

- Geospatial Information for Sustainable Development: 2030 Agenda, Sendai Framework, etc.
- Integration of Geospatial & Statistical Information: Implement the Global Statistical Geospatial Framework
- Geospatial Information & Services for Disasters: Implement Strategic Framework
- Determination of global fundamental data themes
- Land administration and management
- Legal and policy frameworks
- National institutional arrangements
- Implementation and adoption of standards for the global geospatial information community
- National geospatial data and information systems

2017-2021 Working Groups UN-GGIM: Americas

1. Integration of Statistical & Geospatial Information
2. Disasters
3. Geospatial Data Infrastructure in the Region

Integration of Statistical & Geospatial Information

- Antigua and Barbuda
- Bahamas
- Barbados
- Belize
- Brazil
- Cuba
- Chile
- Argentina
- Dominica
- Ecuador
- El Salvador
- Guyana
- Mexico
- Paraguay
- Peru
- St. Vincent and the Grenadines
- St. Maarten
- Suriname
- United States of America
- Uruguay
- Venezuela
STATISTICAL AND GEOSPATIAL FRAMEWORK FOR THE AMERICAS (MEGA)

MEGA will enable the linking of statistical information of various types, and its corresponding geospatial location, and will improve the accessibility and usability of these geospatially-enabled statistics.

01. Use of fundamental geospatial infrastructure and geocoding
02. Common geographies for dissemination of statistics
03. Geocoded unit record data in a data management environment
04. Interoperable data & metadata standards
05. Accessible & usable
SOME EXAMPLES OF STATISTICAL-GEOSPATIAL INTEGRATION FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2. The National Geostatistical Framework (MGN)

INEGI AND THE NATIONAL SYSTEM OF STATISTICAL AND GEOGRAPHIC INFORMATION (SNIEG)

KEY ELEMENTS

- Statistical and Geospatial Information within the same institution since 1983
- Constitutional-level autonomy, since 2008
- Coordination of the National System of Statistical and Geographic Information (SNIEG)
THE NATIONAL GEOSTATISTICAL FRAMEWORK (MGN)

Geostatistical Areas:

• State (AGEE)
• Municipalities (AGEM)
• Basic (AGEB)

SOME EXAMPLES OF STATISTICAL-GEOSPATIAL INTEGRATION FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2. The National Geostatistical Framework (MGN)
3. 2020 Census
2020 POPULATION AND HOUSING CENSUS
Geo-REFERENCING

SOME EXAMPLES OF
STATISTICAL-GEOSPATIAL INTEGRATION
FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2. The National Geostatistical Framework (MGN)
3. 2020 Census
4. Indicator 9.1.1
WORKS ON INDICATOR 9.1.1
PROPORTION OF THE RURAL POPULATION WHO LIVE WITHIN 2 KM OF AN ALL-SEASON ROAD

Geospatial Information:
- Topographic map 1:50 000
- Transport Information Layer
- Paved/rural/transitable roads (all-season)

Statistical Information:
- Population Census 2010
- Settlements with less than 2500 people

Habited rural settlements 188,597 (ITER 2010)
WORKS ON INDICATOR 9.1.1
PROPORTION OF THE RURAL POPULATION WHO LIVE WITHIN 2 KM OF AN ALL-SEASON ROAD

All-season roads:
2km buffer around each all-season road

Habited rural settlements within 2km buffer
WORKS ON INDICATOR 9.1.1

PROPORTION OF THE RURAL POPULATION WHO LIVE WITHIN 2 KM OF AN ALL-SEASON ROAD

Number of rural settlements

...within 2km buffer (green)
24,259,295

...outside 2km buffer (pink)
26,059,128

93.1 %

SOME EXAMPLES OF STATISTICAL-GEOSPATIAL INTEGRATION FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2. The National Geostatistical Framework (MGN)
3. 2020 Census
4. Indicator 9.1.1
5. The System of Environmental Economic Accounting (SEEA)
THE SYSTEM OF ENVIRONMENTAL ECONOMIC ACCOUNTING

- An internationally agreed statistical framework to measure the environment and its interactions with economy

- SEEA CF adopted as international statistical standard by the UN Statistical Commission in 2012

- SEEA Experimental Ecosystem Accounting:
 - complements the CF
 - represents international efforts toward coherent EA

Potential Carbon capture in total (above- and below-ground) biomass

<table>
<thead>
<tr>
<th>C capture by total biomass (tC/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -2.00</td>
</tr>
<tr>
<td>-2.9 - -0.15</td>
</tr>
<tr>
<td>-0.15 - 0.05</td>
</tr>
<tr>
<td>0.05 - 0.15</td>
</tr>
<tr>
<td>0.15 - 0.25</td>
</tr>
<tr>
<td>0.25 - 0.40</td>
</tr>
<tr>
<td>0.40 - 0.60</td>
</tr>
<tr>
<td>0.60 - 1.50</td>
</tr>
<tr>
<td>1.50 - 2.50</td>
</tr>
<tr>
<td>2.50 - 18.0</td>
</tr>
</tbody>
</table>
SOME EXAMPLES OF STATISTICAL-GEOSPATIAL INTEGRATION FOR THE SDGS AND 2020 CENSUSES

1. MEGA
2. The National Geostatistical Framework (MGN)
3. 2020 Census
4. Indicator 9.1.1
5. The System of Environmental Economic Accounting (SEEA)
6. Conclusions

CONCLUSIONS

• Having statistics and geography in a single national institution has allowed Mexico for a better integration and use of complementary information systems.

• The use of integrated geographic and statistical data allows for better design and monitoring of public policies, census and internationally-agreed goals—such as the SDGs.
THANK YOU.

FOR MORE INFO. CONTACT:

PALOMA MERODIO
paloma.merodio@inegi.org.mx

JIMENA JUÁREZ
jimena.juarez@inegi.org.mx