

Developing a global, people-based definition of cities and settlements for statistics

UN-GGIM Side Event Forum on geospatial information management 30 July 2018 Ekkehard Petri, Lewis Dijkstra - European Commission

> Regional & Urban Policy

Overview

- Stakeholders
- Why do we need a global definition?
- Proposed solution
- Results from testing and benchmarking
- Outlook

Who committed to develop a global definition?

- The European Union together with the OECD and the World Bank launched this commitment during Habitat III in Quito in 2016
- FAO has joined this commitment in 2017
- UN-Habitat has joined this commitment in 2018
- **Goal:** Have this definition approved for international statistical comparisons and SDG measurement by the UN Statistical Commission in 20202
- This will NOT replace national definitions.
- This definition will only be used for statistics

Why is this needed?

- The sustainable development goals include many indicators that should be measured in rural areas, urban areas or cities
- SDG 11 focusses cities
- Many of these indicators are highly sensitive to where the boundary is drawn.
- National definitions are too different to use for international comparisons

SDG City goals but no city definition

	City Centre	Edge of the city
Open Space	Low	High
Air pollution	High	Low
Access to transport	High	Low
Built-up area per head	Low	High
Population change	Low (neg)	High
Built-up change	Low	High

Access to public transport by distance to centre

Where does your city stop?

So what's the situation?

National definitions vary and are often not statistical

- 75 countries use population size or density, but thresholds and spatial units vary
- 47 use a combination of population and other indicators

- 10 use other indicators than population
- 100 countries use administrative designations, i.e. not a statistical definition that can be replicated in other countries

Only half the national definitions rely on population size (and density)

Definition relies on:

Population size and/or density indicators

- A combination of indicators including population size or density
- Other indicators than population size or density

No statistical definition reported

3,000 Km

85 countries out of 100 use a minimum population of 5,000 or less

Population size thresholds to define urban population, WUP 2018

A single density threshold cannot reproduce the nationally defined urban population shares

Population density threshold applied to 1 km² grid cells 0 - 100 500 - 500 500 - 1000 5000 - 10000 50000 - 100000 50000 - 100000 > 100000 50urce: GHS-pop 2018, WUP 2018 0 3.000 Km

What indicators can be used globally to define rural areas?

- Agricultural employment? Varies too much
- Infrastructure?
- Services?
- Poverty?

Varies too much No harmonised data No harmonised data Circular argument:

Rural cannot be defined by problems, because then no problems = no rural

Remoteness

Can be captured as a separate dimension

Access to cities - Remoteness

Urban areas ... lost in translation?

Big urban areas

- High Density
- Big population
- Low shares of agricultural jobs
- Specialised services (higher education, hospital, government)

Small urban areas

- Medium density
- Medium population
- Medium share of agricultural jobs
- Some services (primary school, doctor)

So what's the solution?

• People based definition using a neutral geography

Population grids: an emerging global standard for population statistics

- Overcomes key obstacle: the variable size and shape of administrative and statistical units
- Boundaries are fixed
- Consistent and high spatial resolution
- Based on geo-coded census
- More and more NSIs produce grids: Brazil, Egypt, EU Member States...

Grid cells: same shape and size and boundaries do not change

Administrative or statistical units

Three types of grid cells

<i>Urban</i> <i>centres</i>	<i>Contiguous cells</i> <i>above</i> 1,500 <i>residents per km</i> ² <i>and</i> <i>at least</i> 50,000 <i>people in the centre</i>
Urban Clusters	<i>Contiguous cells</i> <i>above 300 residents per km² and</i> <i>at least 5,000 people in the cluster</i>
Rural grid cells	Cells below 300 residents per km ² + other cells outside urban clusters

Cork, Ireland: Urban centre, urban clusters and rural grid cells

Urban centre	
Urban cluster	
Rural grid cell	
LAU2	

2 4 km

Three types of municipalities

Cities	> 50% pop. in urban centres
Towns and suburbs	> 50% pop. in urban clusters and not classified as city
Rural area	> 50% pop. in rural grid cells

Urban areas = Cities + Towns and Suburbs

Cork, Ireland: Urban centre, urban clusters and rural grid cells

Urban centre	
Urban cluster	
Rural grid cell	
LAU2	

2 4 km

Cork, Ireland: City, towns & suburbs, and rural areas

LAU2

City

Towns and suburbs

Rural areas

Benchmarking

• Comparison of Degree of Urbanisation to national Definitions

Two different concepts of urban

Urban areas ... lost in translation?

Small urban areas

- Medium density
- Medium population
- Medium share of agricultural jobs
- Some services (primary school, doctor)

Europe & Americas

Large urban areas

- High Density
- Big population
- Low shares of agricultural jobs
- Specialised services (higher education, hospital, government)

Africa & Asia

National definition more urban (green) Degree of urbanisation more urban (red)

Pilot projects to compare definitions

- Apply the definitions to administrative units (municipalities...)
- Appraise the result:
 - Too urban or too rural?
 - Too many or too few cities?
- Improve data (better population and/or remote sensing data)
- Find out if/how we can improve the definitions

Pilot projects by EC, OECD and WB

- Australia
- Brazil (completed)
- Colombia
- Egypt
- Haiti
- Indonesia
- India
- Jordan
- Malaysia

- Mozambique
- Pakistan
- South Africa (completed)
- Tunisia
- Turkey
- Uganda
- Ukraine
- USA

Australian cities

Brazil

- We believe that this method offers a useful basis for statistical comparisons across national borders...
- ... useful for generating Sustainable Development Goals' indicators, producing data for these three types of cluster or for individual municipalities ...

Survey by UN Statistical Division

- 1. Algeria
- 2. Argentina
- 3. Australia
- 4. Bolivia
- 5. China
- 6. Cuba
- 7. Ecuador
- 8. Ethiopia
- 9. Indonesia 10.Japan

11. Mexico 12. Mongolia 13. Namibia 14. New Zealand 15. Republic of Korea 16. Senegal 17. Thailand 18.USA 19. Venezuela 20. Zambia

Responses to the UN survey

- 9 out of 12 NSIs: it captured their main cities.
- 5 out of 8 NSIs the validity was good or satisfactory (1 poor and 2 unacceptable)
- 9 out of 10 NSIs could produce data by degree of urbanisation
- 9 out of 13 NSIs useful for international comparisons
- 11 out of 12 NSIs useful for measuring the SDGs
- 5 NSIs did not reply at all
- Some confusion about spatial units, density thresholds and the distinction between cities and towns

What could be the contribution of the geospatial community?

- *Geocoding infrastructure for statistics based on geocoded address and building registers*
- Essential for geo-coded census/population grid with high frequency (annual)
- More and more NSIs produce grids: Brazil, Egypt, EU Member States...

Next events & steps

- Continue to work with pilot projects (and more are welcome)
- September International Association of Official Statistics, (Paris)
- Present the definition for information to the UN Statistical Commission March 2019
- August 2019, World Statistical Congress, Kuala Lumpur
- Present the definition for discussion and decision to the UN Statistical Commission March 2020

Conclusions

- National definitions of urban areas are so different as to make them unsuitable for international comparisons
- Degree of urbanisation overcomes one of the main statistical obstacles to define urban and rural in a comparable manner

More information

- <u>https://ec.europa.eu/eurostat/cros/content/globa</u> <u>l-city-and-settlement-definition_en</u>
- <u>http://ghsl.jrc.ec.europa.eu/degurba.php</u>

