Geodatabase Development Considerations: Schemas, Attributes, and Metadata
Data Quality and Schemas
Data Quality

- When you create or acquire spatial data, you need to verify its quality before it can be used operationally.

- Two types of data quality assessment:
 - **Accuracy**: Ensuring your data correctly represent the specified location on the Earth’s surface.
 - **Integrity**: Can encompass accuracy above but also includes data management and maintaining consistency during processing.
Accuracy and Precision

- Measures for assessing spatial data quality:
 - **Accuracy**: Agreement between a data point and its true location (reference value).
 - **Precision**: Number of significant figures stated in a value or the certainty with which a measurement is repeatable at a given location.
 - **Margin of error** helps to quantify spatial error.
 - Determined by quality of digitization or field collection instruments.
Accuracy and Precision

- Higher accuracy
 - Lower precision

- Lower accuracy
 - Higher precision
Integrity

- **Data integrity** is a loosely defined concept focused on maintaining quality over the entire lifecycle of data.
 - From production to dissemination.
 - Ensuring data are not **corrupted** during processing.
 - Can also include protecting against inadvertent **disclosure**.
- Includes the design and maintenance of databases.
- ArcGIS includes a number of useful data integrity tools which we will explore in depth.
 - These tools help you manage both your attribute data and spatial data.
Data Schemas

- Depending on the context, a schema can be **conceptual** or **physical architecture**.
- A conceptual schema is much like a blueprint.
- **Database schemas** define the specific roles of each database object, including tables, fields, and relationships.
- Ideally, you should have a data management schema in place for your organization.
 - Helps you to visualize your datasets and their relationships.
 - Improves data quality by preventing repetition and desynchronization of attributes.
Developing a Data Schema

- In ArcGIS, your data schema will involve:
 - Identifying all of your geospatial datasets.
 - Listing and defining their attributes.
 - Establishing rules for the behavior of your geospatial and attribute data.
 - Determining the relationships between geospatial datasets and attribute tables.

- This schema also acts as your data dictionary.
Group Exercise

- Let’s develop a hypothetical data schema for a census geodatabase.

- We need to list:
 - Feature classes (and feature datasets).
 - The attributes for each feature class.
 - Their appropriate behavior.
 - Their relationships.
Managing Attribute Quality in ArcGIS
Attribute Management

- The File Geodatabase includes a number of useful tools for managing your data attributes.
- These tools are meant to improve editing efficiency and also maintain data quality.
- For example, you can restrict a field to only a few specific values, such as “yes” or “no”.
- These **attribute management tools** are distinct from the **spatial data management tools**, which we will discuss later.
- We access these tools with **ArcCatalog**.
Subtypes

- **Subtypes:** Rules for categorizing distinct features in the same feature class.

- **Example:** Roads.
 - Normally subject to a national transportation classification system, so only a few possible values.
 - E.g., “Trunk Road”, “Primary Road”, “Secondary Road”, “Residential Street”.

- With subtypes, we can automatically classify roads as we edit, saving time and improving data quality.
Domains

- **Domains**: Constraints which limit attribute values to a numerical range or a list of possibilities.

- **Example 1**: Population value in a province.
 - A province cannot have a negative population value.
 - If we also know that no province has a population greater than 10,000,000, we could set our domain range to 0-10,000,000.

- **Example 2**: Enumeration area status.
 - During census operations, a field worker could indicate whether enumeration is complete in an EA.
 - We could set a simple yes/no domain value with no other possibilities.

- We will go over subtypes and domains in detail during the exercises.
Metadata
Metadata

- Metadata is “data about data”.
 - Traditional example of metadata: a library catalog.
- Stores information which describes a file’s purpose, contents, methodology, and proper use.
- **Critical for every dataset**, whether geospatial or not.
- Unfortunately metadata are often lacking.
Reasons for Using Metadata

- **Helps data users** understand how to use a specific dataset properly.
- Provides a **structured and consistent format** useful for cataloging and organizing.
- Acts as **institutional memory** for data managers who may not revisit a particular dataset for a long time.
- Improves **transparency** and the ability to **discover** new data sources.
Metadata Components

- **All metadata** commonly includes:
 - Technical description such as file format, field names and meanings, methodology, and instructions for proper use.
 - Source/authorship of data.
 - Contact information for questions.

- **Geospatial metadata** can also include:
 - Spatial error, if known.
 - Spatial extent.
 - Coordinate system used.
Several international organizations establish standards for metadata.

The most common metadata standard is maintained by the International Organization for Standardization: ISO 19115 and ISO 19139.

The latter is a specification for XML, which is also a standard file format we discussed previously.
Metadata in ArcGIS

- Metadata in ArcGIS is managed in **ArcCatalog**.
- By default, can store metadata in several formats, including ISO 19139.
Example of Raw XML Metadata

```xml
<metadata>
  <idinfo>
    <citation>
      <citeinfo>
        <origin>
          U.S. Department of Commerce, U.S. Census Bureau, Geography Division
        </origin>
        <pubdate>2013</pubdate>
      </citeinfo>
      <title>
        TIGER/Line Shapefile, 2013, nation, U.S., Current county and Equivalent National Shapefile
      </title>
      <edition>2013</edition>
      <geoform>vector digital data</geoform>
    </citation>
    <onlink>
      http://www2.census.gov/geo/tiger/TIGER2013/COUNTY/tl_2013_us_county.zip
    </onlink>
  </idinfo>
  <abstract>
    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau’s Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover
  </abstract>
</metadata>
```