The 2020 U.S. Census: A Time for Change

Tim Trainor

U.S. Census Bureau

Trends

- Adaptive design
- Mobile technologies and increased automation in the field
- Big data / paradata
- Focus on addresses for survey frames

Background

Planning for the 2020 U.S. Census

- Contain costs
 - Design and conduct a census that costs less per housing unit than the 2010 Census while maintaining high quality
 - Identify cost drivers and implement innovative enumeration methods aimed at reducing these costs
- Plan based on research and testing
 - Focus early research and testing program on major innovations to the design of the census oriented around major cost drivers of the 2010 Census

Census 2020 Objectives

- Contain costs
- Increased use of addresses
 - A redesigned address canvassing operation
- Optimize self-response program
 - Increase self-response options
 - Make use of electronic contact strategies and methods
- Maximize internet response
 - Increase awareness of the internet option
 - Encourage respondents to respond via the internet
- Continue small area geographies for data users

Decennial Census Cost Drivers

- Need for nationwide updating of address list prior to Census
- Diversity of the population
- Demand for improved count accuracy
- Declining response rates
- Management of major acquisitions, schedule, and budget
- Field Infrastructure

Decennial Census Research Relative to Cost-Drivers

- Redesigned Address Canvassing Operation
- Administrative and Commercial Records
- Use of Mobile Technologies
- Streamlining and Automating Field Management and Operations
- Optimizing Self Response

Key Milestones Steps Towards 2020 Census

Adaptive design

Adaptive Design

- A data collection is adaptive to the extent that it:
 - Plans fieldwork to achieve cost and quality goals
 - Monitors process data and cost and quality indicators
 - Uses auxiliary frame data to tailor contact approaches (or impute or adjust)
 - Uses auxiliary data, paradata and response data to change contact approaches rapidly
 - Strikes data-based cost/quality tradeoffs

Adaptation is NOT New

- Sub-sampling non-respondents
- Increasing contacts
- Timing contacts
- Increasing incentives
- Tailoring survey invitations
- Tailoring refusal letters
- Switching modes

Some Adaptations ARE New

- More centralized, less ad hoc, more timely efforts, e.g.
- Using auxiliary data to tailor contacts
- Using auxiliary data, paradata and response data to alter contacts
- Switching modes based on auxiliary data, paradata and response data
- Motivated by a plan and enabled by new systems

Optimizing Self-Response

- Internet data collection
- Adaptive contact strategies
- New contact modes
 - Telephone
 - E-mail

Mobile Technologies and Increased Automation in the Field

Major Changes for Field Operations

- Using automation to support processes
 - Optimized daily enumerator assignments of respondent contact attempts
 - Near real time operations information for decision making
 - Enhanced operational control system
 - Automated training for enumerators and managers
- New field structure, including field staff roles and staffing ratios

Mobile Technologies

- Routing
- Navigation
- Data Collection

Field Reengineering and Nonresponse Followup (NRFU) using Administrative Records and Adaptive Design

- Reengineer the roles, responsibilities, and infrastructure for the field
- Evaluate the feasibility of fully utilizing the advantages of technology, automation, and realtime data to transform the efficiency and effectiveness of data collection operations
 - Move to automated training for enumerators and managers
 - Test and implement routing and/or navigation
 - Reengineer the approach to case management

Field Reengineering and NRFU using Administrative Records and Adaptive Design (cont.)

- Reduce NRFU workload and increase NRFU productivity with:
 - Administrative Records
 - Reduce cases that need to be resolved in NRFU by varying type of cases removed and timing of case removal from the workload
 - Reduce the number of contact attempts to cases resolved in NRFU
- Field Reengineering and Adaptive Design
 - Reduce the number of contact attempts
 - Leverage dynamic case management with route planning and other methodologies to improve enumerator productivity through automation
- Planned for an April 1 Census Day

Field Organizational Structure

Concept of Operations

Big Data

Relative Sizes of Digital Data Production, c.1960

Big Data

Relative Sizes of Digital Data Production, 2010

Big Data Research

- Administrative records to improve cost and increase timeliness and accuracy
 - Quality control
 - Coverage improvement
 - Substitute for in-person visits to households that do not self respond
- Processing techniques to allow real time decision making
 - Adaptive design
 - Self response options
- Data dissemination via API's to allow creation of apps and products that combine our data with other external data sets
 - Census explorer data visualization
 - Other apps from our web site
 - More work required in this area to stimulate interest

Big Data: Concerns

- There are no currently acceptable processes or procedures for using Big Data to produce Official Statistics
 - Don't even have a common definition of Big Data

Focus on Addresses for Survey Frames

The GSS Initiative (GSS-I)

- An integrated program of improved address coverage, continual spatial feature updates, and enhanced quality assessment and measurement
 - All activities contribute to MAF/TIGER Database improvement
 - Builds on the accomplishments of last decade's MAF/TIGER Enhancement Program (MTEP)
- Supports the goal of a redesigned address canvassing for the 2020 Census
- Continual updates throughout the decade support current surveys

Address Updates

Lat 37 degrees, 9.6 minutes N Lon 119 degrees, 45.1 minutes W

Street/Feature Updates

Quality Measurement

Redesigned Address Canvassing

General Questions:

- Is a traditional, on-the-ground canvassing operation necessary to ensure a complete and accurate address list for the decennial census?
- Are there areas of the country in which the address list and locational information can be kept current without canvassing?
- What characteristics identify an area that should be included in a traditional canvassing?

Research Goals

- Develop statistical models to identify geographic areas to be canvassed or not canvassed
 - Predict adds and deletes with estimated coverage error
- Interactive Review Identify and classify areas
 - In which the number of addresses/housing units is stable and unlikely to change
 - With unique housing/addressing/mail delivery situations that may require canvassing
 - Land use/land cover is entirely non-residential
 - Where the address list can be updated and assured through administrative or operational methods

Address Canvassing Research, Model, and Area Classification

- 2009 Statistical Model
- 2013 Statistical Model

- Interactive Review
 - 27 test counties

MAF Error Model Objective

- The objective of the MEM project is to provide statistical models for the MAF that will produce estimates of coverage error at levels of geography down to the block level
 - These models could potentially inform Address
 Canvassing decisions

What is the MAF Error Model?

- Two predictive models developed at the block level, collectively known as the "MAF Error Model"
 - One model for the number of adds and one model for the number of deletes as functions of identified predictors
- Zero-inflated (ZI) regression models
 - Zero-inflated models can provide a model-based approach to obtaining coverage estimates
 - Provides more granularity at lower levels of geography over other common modeling approaches (e.g., logistic regression)

Address Canvassing: Master Address File (MAF) Model Validation Test and Focused Field Address Resolution Approach

Model Based Approaches

- Test our ability to use statistical modeling to measure error in the MAF and to identify areas experiencing significant change
- Inform the performance of the models used to define the Address Canvassing workloads

Focused Field Address Resolution ("micro-targeting") Approach

- Incorporate imagery reviews to detect changes and discrepancies
- Include field updating of addresses for portions of blocks

MAF Model Validation Test Objectives

- The purpose of the MAF Model Validation Test (MMVT) is to collect data to inform components of the Address Canvassing decision-points
 - MAF Error Model
 - Address Canvassing, Research, Model, and Classification team
 - Models for Zero Living Quarters blocks
- Test the concept of Micro-Targeting and uses of imagery

Getting to a
Recommendation
for a Redesigned
Address
Canvassing
Operation

First Round of Geographic Exclusions Identified

Cost Estimation

• 2009 model

• Wilitary

• Methodology for inclusion determined determined exclusions Identified

Sept 2014

Data Modeling

- Statistical
- •2009
- •2013 •Empirical
- Partner File Acquisition
 - •Data Upload
 - DataEvaluation
 - Quality Indicators

Sept

Asse the 2 Models and

Methodologies

refined

Assess results of the 2014 MAF Model Validation test Partner File Acquisition

- •Data Upload
- Data Evaluation
- Quality Indicators

2020 Census

Operations

Defined

Address Canvassing Methodology Plan

Preliminary Federal Land Use and similar types of blocks

2009 TEA* Operational Overlay - Remove non-MO/MB areas (UL, UE...)

2009 Statistical Models (2020 and GSS) - Use only data available in 2009

- Preliminary Cost Estimation
- Jan 2014 March 2014

Federal Land Use and 2009 TEA Operational Overlay

Preliminary Interactive Review 4/14
Use Aerial Imagery to add/remove blocks

2013 Statistical Models 4/14 Use only data available in 2013

- Cost Estimation

- Quality Metrics (MMVT)

LCAT

Process definition occurs here and will be repeated

GEO "go/no go" Recommendation 9/14Field Infra Decision Point 1/15

LCAT will examine costs on later operations and provide feedback to modify models

MAF Model Validation Test 9/14-12/14
Data available on January 2015

Consolidate the Models

2015 Methodology 3/15 Process Defined

- Observe and measure the performance of the models
- Update the models with more current field data (5 yr. field update)
 - Cost Estimation
 - Quality Metrics (QI and models)
 - LCAT

- Recommendation for Integration 9/15

- Field Infrastructure Decision Point 1/16

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

Frame Schedule

Nov 2013

* 2009 Statistical Models (2020 and GSS) Use only data available in 2009 Jan 2014-Mar 2014

Preliminary
Federal Land
Use and
similar types
of blocks

 2009 Type of Enumeration Area (TEA)
 Operational Overlay
 Remove non-MO/MB areas (UL, UE...)

- * Preliminary Cost Estimation
- Quality Metrics (MMVT)
- Preliminary LCAT

LCAT (Life Cycle Analysis Team) examine impacts on later operations Apr 2014

✓ Preliminary
Interactive
Review
Use Aerial
Imagery and
Micro
Targeting

* 2013 Statistical Models Use only data available in 2013

Sept 2014 – Dec

Recommendation

*MAF Model

Validation Test

(MMVT)

Data available in

January/February

2015

∕ GEO

"go/no go"

(Sept 2014)

Analysis

- Preliminary Micro Targeting research
- Observe and measure the performance of the models
- Update the models with more current field data (5 yr. field update)

Jan 2015

* Preliminary Field Infrastructure Decision Point Consolidate the Models

July 2015

Sept 2015

* Estimate

Preliminary

AC Workload

* Determine

Preliminary

Operational

Design for AC

Mar 2016

- * Workloads
- * Production rates
- * Operational timeline

* Final Field Infrastructure Decision Point

* Cost Estimation

* Targeting

Methodology

Process

Defined

- Quality Metrics (QI and models)
- LCAT

Summary

- A redesigned census
- Traditional approaches are challenged
- Adds risk
- Modernization is critical
- All comes down to cost

Questions?

