Role of the Geospatial Information Authority of Japan in Disaster Response as Exemplified in the Great East Japan Earthquake in 2011

UNE, Hiroshi
Geospatial Information Authority of Japan (GSI)
interaction of nature and mankind

physical working of nature
- gravity
- water
- air
- earth rotation
- plate movement

→ human activities
- habitation
- agriculture
- economy
- transportation
- tourism
- disaster

blessing
disaster life cycle

prepare

mitigate

respond

recover

evaluate

estimate

plan

reinforce

learn

drill

observe

warn

evacuate

rescue

rebuild

revitalize

Geospatial information

Geospatial Information Authority of Japan
The Ring of Fire has 452 volcanoes and is home to over 75% of the world's active and dormant volcanoes. About 90% of the world's earthquakes and 81% of the world's largest earthquakes occur along the Ring of Fire.

From Wikipedia
Typhoon paths

Global Tropical Cyclone

Terra – MODIS/NASA
Blessings
What would be the role of NGIAs in disasters?
Mandate

• Basic Act for Disaster Countermeasures
 – Enacted more than 50 years ago
 – To protect land and property of the country/people from hazards by making necessary institutional arrangements and other measures including financial provisions
 – 24 designated organizations in the Government including GSI
 • Mandated to gather and share information on disasters, while maximizing the use of geospatial information.

Amended after 3.11 Earthquake
GSI Response Summary

<table>
<thead>
<tr>
<th>Management</th>
<th>Outbreak (3/11)</th>
<th>1 Day</th>
<th>3 Day</th>
<th>1 Wk</th>
<th>1 Mon</th>
<th>3 Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set up Emergency HQs (0h)</td>
<td>Provision of geo-spatial information (2nd day-)</td>
<td>Dispatch of liaisons to the affected areas (6-65 day)</td>
<td>Dispatch of liaisons to operational offices (0.5h-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustal movement, Benchmark</td>
<td>GNSS based movement analysis (3h)</td>
<td>Fault modeling (2nd day-)</td>
<td></td>
<td>Revision of geodetic results (-10/31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial photo, imagery</td>
<td>Aerial photo survey (1 day-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage mapping</td>
<td>Disaster overview map</td>
<td></td>
<td>Tsunami inundation mapping (3rd day-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base map etc.</td>
<td>Base map provision (1h)</td>
<td>Information Release through GSI web map system (2nd day-)</td>
<td></td>
<td></td>
<td></td>
<td>Base map for reconstruction</td>
</tr>
</tbody>
</table>
Disaster caused by the Great East Japan Earthquake on 11 March 2011

- **Earthquake:**
 - Epicenter: Off coast of Sanriku area
 - Depth: 24km Magnitude: 9.0
 - Fault: Length 450km, Width 200km

- **Tsunami:**
 - Highest elevation reached: 43m
 - Inundated areas: 561 square km
 - Nuclear plant accident
What GSI did at 3.11 Earthquake

- Provision of maps of affected areas (paper maps, digital maps, printed images)
- Detection and analysis of ground surface movement with GNSS control point network
- Air survey (Aerial photos, Ortho images)
- Photo interpretation to map inundated areas
- LiDAR survey for detailed elevation data
- SAR interferometric analysis
- Resurvey of geodetic control points
- Reconstruction of destroyed GNSS station
- Recalculation of geodetic coordinate system
- Guidance for local governments’ resurvey
- Modeling of fault slip using inversion method
What GSI did at 3.11 Earthquake in emergency response phase

• Provision of maps of affected areas
 – Immediately (< 1h) to designated Government offices starting from small-scale maps (1:500k).

• Detection and analysis of ground surface movement with GNSS control point network

• Air survey (Aerial photos + Ortho images)
 – Photo interpretation and measurement of damaged areas.

• …
Provision of Maps (< 1 hour)
Ground Surface Movement (+ 3 hours -)

GNSS based control stations observed large crustal movement

Horizontal

- Oshika: 5.3 m
- Tokyo: 0.2 m

Vertical

- Oshika: 1.2 m
Air photos (+ one day -)
Photo Interpretation (+ 3 days -)

Inundation Areas
Total inundation areas: 561 square km
Recovery Phase (+ 1-2 months -)

- Resurvey for new coordinates of geodetic control points
 - Resurvey of selected control points
 - Calculation of transformation parameters
 - Revision of coordinates of control point network origins (horizontal & vertical)

- New mapping of damaged areas
 - 1:2,500 scale mapping for reconstruction planning
Correction parameters for triangulation points

Horizontal Coordinates

Elevation
To whom?

Central Gov.

MLIT
Sit. Cen.
Briefing Maps
Liaison
Ministries Agencies

PM Office
Sit. Cen.
Liaison
Printed Maps
HDD

GSI HQ.
Web

Local Governments

Gov. L.O.
Map Team
Liaison
Printed Maps
HDD

GSI R.O.
Printed Maps
HDD

Local Governments

S.D.F.

People/Media
What can we do in pre-disaster stage
What should be done in preparation?

“What we can’t do normally can’t be done well in emergency response.”

Good preparation makes us respond successfully to disasters.

What makes us well prepared for disasters?
• Old air photos immediately tell us the impact of a disaster when compared to those taken after the disaster.

 – Archiving maps and air photos to make them readily available for disaster response is NGIA’s important responsibility.
Map revision

• Rescue workers from remote areas rely on maps in the planning of their operations.

• If maps don’t show latest features, their work might be significantly hampered.
Cooperation with relevant organizations

Arrangement for Emergency Air Survey

GSI

Prior Agreement

Request

Emergency Contract

Bypassing Bidding Process

Public Corporation

Company A

Company B

Company C

Company D

Products Delivered (Photos, Ortho images)
Drills

- Drills train us well prepared for disasters and also help us identify processes/equipment that need improvement/repair.
 - Communications
 - Response in 10 minutes to emergency messages to cell phone
 - Teleconference in 30 minutes
 - Air photos transfer to users (after plane landing)
 - < 4 hours for 11 prefectures around Tokyo
 - < 6 hours for the rest
Concluding Summary

• We can prepare for disasters through understanding the workings of nature and the interaction with human activities GEOGRAPHICALLY.

• GEOSPATIAL INFORMATION is vital throughout all the processes of disaster life cycle.

• NGIA should voluntarily contribute to disaster measures, especially the prompt response to disaster.
Concluding Summary

- Prompt provision of paper maps, printed copies of maps and aerial photos of damaged area on the scene can greatly help the rescue and recovery activities.

- Collaboration among the relevant organizations is the key for good contribution. Pre-disaster relationships with central and local governments and relevant private sectors should be critical.
Concluding Summary

• Archiving maps and air photos to make them readily available for disaster response is NGIA’s important responsibility.

• Map revision is also an important task for NGIAs as the preparation for disaster response.

• The role of NGIAs is becoming increasingly important because of the growing awareness on the critical role of geospatial information in case of disasters. NGIAs should constantly improve their preparedness for disaster.
Concluding Summary

• GSI has a lot of experiences and knowledge for disaster prevention and response. We would be appreciate if we can share our experiences in the NGIA community of the world through such as science and technology cooperation programs and ODA schemes.

• Contact: International Division
 intex@gsi.go.jp
THANK YOU!

UNE, Hiroshi
une@gsi.go.jp