Logistics and Means of Collecting Geo-Coded Statistical Data

Luiz Paulo Souto Fortes, PhD

Thematic Seminar on the ‘Integration of Statistical and Geospatial Information: Issues and Challenges’

Seoul, October 27, 2011
The close integration of geographic information in statistical applications yields large benefits to NSOs as it reduces the cost and time required to collect, compile and distribute information, and leads to a greater number of services and a much wider use of statistical information, thereby considerably increasing the return on investment in data collection.

\[\text{IBGE} = \text{Geographic Information} + \text{Statistical Information} \]

Applications: Censuses/Spatial Data Infrastructures
Example of application: after a disaster, satellite images can provide information on affected areas and, based on statistical related data, rescue and relief can be planned.
Evolution of Geotechnologies

Mainframe Computing 1960s

Mini Computing 1970s

Personal Computing 1980s

Desktop Internet Computing 1990s

Mobile Internet Computing 2000s

Evolution of Geotechnologies

Handheld Devices (PDA)

GIS/Web

Low Cost Images

Increasing use at IBGE for both Geosciences and Statistics

Brazilian Geospatial Statistics
Innovations in data collection

• First time PDA has been used

• Determination of agricultural establishments’ coordinates by PDA/GPS

• After collecting coordinates, the system automatically displayed the corresponding questionnaire

• 82,000 devices
• 68,000 enumerators
• 11,000 supervisors
• 162,770 enumeration sectors
• More than 5 million agricultural holdings
Advantages

• **Immediate quality control** at the moment of data typing
• **Filling of all compulsory items**
• **Control of data filling** by automatic jumps in the form
• **Direct transmission** of collected data to central system
• **Dispensing the transportation** of high volumes of paper questionnaires and their handling in data collection centers
• **Location of the units surveyed** in rural areas (agricultural, health and educational establishments)
2006 Agricultural Census Innovations

More than 5 million agricultural holdings georeferenced
Population Census produces information on the main characteristics of people and households in each of the 5,565 Brazilian municipalities.

Population Census encompassed approximately 67 million housing units.
2010 Population Census – Main steps

- Delineation of enumeration of areas (316,574)
- Pre-Census (224,402 urban enumeration areas)
- Parameters for data collection
- Data collection
For 2010 Census, IBGE developed a Census Mapping Project to integrate Municipalities’ urban and rural areas in a full digital format.

Massive use of aerial and orbital imagery.

Characteristics of 2010 Census Enumeration Areas:
- Each enumeration area is the working field of each enumerator.
- EA is a **continuous area** located at rural or urban places.
- Adherent to Boundaries of municipalities, districts, and sub-districts.
- Urban EA: covers 300/350 housing units.
- Rural EA: covers 150 agricultural holdings (maximum 500 km²).
2010 Population Census

Integrated Census Mapping to support 2010 Census
• The “National Address File for Statistical Purposes – CNEFE” file associated to blocks and block-face in urban enumeration areas
• Geometrical integration of urban and rural limits for each Municipality

SISMAP – Brazilian System for Census Mapping
• IT tool developed for municipal mapping in a seamless spatial database
• Input data from several sources - vector and imagery data, like GIS, GPS, satellite imagery, digital and aerial photography
27 Federation Units (States)
5,565 Municipalities
10,283 Districts
662 Subdistricts/R.A.
316,574 Enumeration areas
 240,382 urban
 76,192 rural
2010 Population Census

New ways of dissemination

Up to 2007 Census
Enumeration areas corresponded to the minimum area for statistical data analysis

As of 2010 Census
Block-faces correspond to the minimum spatial area for statistical data analysis
Need of dissemination rules to fulfill information confidentiality

Area of interest
Selected area

Selected area
Pre-Census in 224,402 Enumeration Areas

Pre-Census (from March to June 2010)

- Review of urban Enumeration Areas performed by 24,000 supervisors hired for the Census:
 - Loading enumeration area maps and the list of streets and block-faces associated with the map
 - Review/updating digital maps with PDA
 - Review/updating association of addresses to digital maps
 - Work unit: block-face

- Duties of Supervisors:
 - For each street: confirm, delete, include, change the name and/or change name's spelling
 - For each block-face: include, exclude, confirm or classify as "NAR" (no addresses in the block-face) and collect surrounding characteristics (electricity, sanitation, security, etc.)
 - Tracking the shape of block-faces not represented on the map with GPS
Pre-Census Application

- Personal Digital Assistant (PDA) application:
 - The application was developed in Windows Mobile, using SQLServer CE 2005, Framework 2.0 and Geopad
 - Loaded in 30,000 PDAs

Pre-Census in 224,402 Enumeration Areas
Pre-Census in 224,402 Enumeration Areas

Pre-Census Application

PDA application: Some forms to collect data
Parameters for Census Data Collection

- Based on information of the Enumeration Areas and data collected during Pre-Census, some acceptance parameters were created for questionnaires collected by the enumerators during the Census which started in 1st August 2010.

- These parameters were loaded into the data collection controlling and monitoring IT System used by supervisors to assess the work of Census enumerators.

- Address list file updated by Pre-Census was used for enumerators routing and coverage control.

- Data Quality Control was carried out for each Enumeration Area, including ratio of species of housing units, average number of persons per housing unit, ratio of people by gender, age, etc.
The average sampling rate is 11%. The rates depend on the number of inhabitants of the municipality and varies from 5% (more then 500,000) to 50% (less then 2,500 inhabitants).

190,000 PDAs were used by enumerators to collect data

Data confidentiality – enumerators did not have access to data stored on the the PDA. After ending an interview, data were encrypted and could only be transferred to IBGE through a secure network.
Data Collection Software Applications

- **Data collection:**
 - Running on the PDA in order to record the interviews, Internet token and update the List of Addresses

- **Data collection/Internet**
 - WEB application to fill out the forms by households

- **Supervision:**
 - Running on the PDA for quality control of the enumerators work

- **SIGPC - Management Information System at the Data Collection Local Station**
 - Running on notebooks, supported all decentralized operations, including administrative and operational tasks and the communication with the Central System
System developed in Windows Mobile and TotalCross

Data Collection Questionnaires Application
Data Collection Supervision Application

- Developed in Windows Mobile, SQLServer CE 2005, Framework 2.0, Geopad
- Management Indicators and results of the previous visits
SIGPC - Management Information System at the Data Collection Local Station

✓ Local application at the data collection station running on notebooks under Windows 7

✓ Essential tool for the administrative and operational organization and quality control of data collection, including:
 - registration of temporary work force
 - task assignment to staff
 - loading the application and Enumeration Area data into PDA
 - receiving collected data from the PDA
 - communication with Central Datacenter
 - reporting of quantitative and qualitative evaluation of data collected
Software Applications at the Central Datacenter

✔ SIGC - Data Collection Management Indicators System
 - Monitoring of data collection (coverage, quality and time of collecting in each Enumeration Area)
 - WEB application running in the main Datacenter generated management reports, summaries, indicators and cartograms

✔ Database system
 - Specialized data model to store the summaries of the data collection, data of supervision, administrative data and List of Address File data
Information and Communication Technology for 2010 Census was developed by staff team of IBGE

- **Data Collection**
 - 7,000 Census Data Collection Local Stations (Census Local Offices), spread over 5,565 municipalities in Brazil
 - 220,000 PDAs for supervision and data collection

- **Regional Coordination**
 - 27 Regional (States) Coordinators for each subject (technical; operational; administrative and ICT)
 - 220 Operational Area Coordinators
 - 1,281 Subarea Coordinators
 - 6,000 Municipality Coordinators
 - 220 ICT Sub-Area Coordinators to deal with all ICT local subjects at the Data Collection Local Stations
ICT for Brazilian Census Data Collection

- All data collection made with Personal Digital Assistant - PDA (there was no paper questionnaire).
- Each PDA was equiped with Enumerator Area Map, Questionnaires (short and long) and List of Addresses.

- 7,000 Census Data Collection Stations equipped with notebooks
 - Census Data Collection Stations were equipped to operate autonomously, connected or not, to the Internet
 - Interaction of PDAs was made solely on the notebooks of the Collection Station, regardless of a network of synchronous communication with the Central Processing
 - In Collection Stations without Internet connection, communication with the Central Processing was done through USB drives (flash drives) physically carrying lots of information to some other point of Internet access
 - All ICT technical assistance (software, hardware and communication) were provided by 220 ICT Area Coordinators.
ICT model in the 2010 Census
ICT in Data Collection

- 150,000 LG-750Q, smartphones locked (Phone, 3G) to be used solely as data collection equipment using programs certified by IBGE
- 70,000 PDA MIO-P550B (already used in 2007)
Data CollectionEquipments

<table>
<thead>
<tr>
<th></th>
<th>PDA MIO P550B</th>
<th>LG GM-750Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>70,000</td>
<td>150,000</td>
</tr>
<tr>
<td>Processor</td>
<td>400 MHz</td>
<td>528 MHz</td>
</tr>
<tr>
<td>RAM</td>
<td>64 MB</td>
<td>512 MB</td>
</tr>
<tr>
<td>ROM</td>
<td>128 MB</td>
<td>512 MB</td>
</tr>
<tr>
<td>Bluetooth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WiFi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>lítio-ion (6 hs)</td>
<td>lítio 1000mAh (10 hs)</td>
</tr>
<tr>
<td>GPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot MMC SD</td>
<td>(2/4 GB)</td>
<td>(2/4 GB)</td>
</tr>
<tr>
<td>Screen</td>
<td>touchscreen 3.5’ , 320 x 240, 65k</td>
<td>TFT touchscreen 3.0’ , 240 x 400, 65k</td>
</tr>
<tr>
<td>1 x USB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Mobile</td>
<td>5.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>
ICT in the 7,000 Census Collection Stations

- Notebook (8,687 units)
 - Blocked by “Content Advisor”
- Router: 1 per Local Office (7,000 WiFi routers)
- Printer: 1 per Local Office
- Internet (where possible) or flash drive for physical transport of information to another place with Internet access
- Supervisor and Enumerator: 1 PDA - MIO or LG
The 7,000 Collection Stations were supported and supervised by 1,281 Subarea Coordinators.

One of the duties of these coordinators was to visit Local Offices under their supervision to provide quality control of collected data and organization.

Equipments:

- Notebook: 1 per coordinator (1,300 notebooks)
- Desktop computer: 1 per Sub Area
- Router (with VoIP): 1 per office
- Multifunctional printer: 1 per office
- Broadband Internet
- 3G Modem: 1 per coordinator
Communication Resources

✓ 2 links of 155 Mb/s for the exclusive operation of the Census 2010 in Rio de Janeiro (Headquarter)
✓ 2 links of 20 Mb/s in São Paulo and Minas Gerais
✓ 2 links of 12 Mb/s in Bahia and Rio Grande do Sul

✓ Subarea Coordination and Census Collection Stations:
 ▪ 3,783 mini modems 2G/3G
 ▪ 139 antennas VSAT (Hughes)
 ▪ 40 antennas BGAN (Tesacom)
 ▪ 4,000 ADSL connections (leased, or by courtesy of others)
 ▪ 1,000 Radio connections
 ▪ 300 other types of connections
Datacenter for the 2010 Census

Central Datacenter (Canabarro)

Windows Servers
Linux Servers
z/OS e z/Linux Servers

Ethernet 10 Gb

Data Analyze Office (Chile)

SAS Server

LAN-to-LAN (100 Mb/s)

Ethernet 1 Gb

Database & TSM Servers

Switch SAN

GPFS Servers

DS4700-70A 45 x 145GB
Baby Shark 2105-800
DS6700 33TB

Tape Drive (Robô) 3592-E05

NAS
Data volumes

<table>
<thead>
<tr>
<th>TRANSMISSIONS</th>
<th>Pre Census</th>
<th>Data Collection</th>
<th>Summary</th>
<th>Supervision</th>
<th>Post Census</th>
<th>Administrative</th>
<th>Internet forms</th>
<th>CENTRAL DATABASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,818 stations</td>
<td>314,017 E.A.</td>
<td>6,831 stations</td>
<td>313,972 E.A.</td>
<td>1,921 stations</td>
<td>6,809 stations</td>
<td>2,290 stations</td>
<td>281 (tables)</td>
</tr>
<tr>
<td></td>
<td>131,303</td>
<td>10,347,094</td>
<td>540,016</td>
<td>13,658,485</td>
<td>9,222</td>
<td>312,816</td>
<td>30,079</td>
<td>397,517.00 MB (data store)</td>
</tr>
<tr>
<td></td>
<td>20,957.27 MB</td>
<td>2,783,161.34 MB</td>
<td></td>
<td>251,090.00 MB</td>
<td>812.23 MB</td>
<td>2,680.00 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSMISSIONS

- Pre Census: 6,818 stations, 131,303 (files), 20,957.27 MB
- Data Collection: 314,017 E.A., 10,347,094 (files), 2,783,161.34 MB
- Summary: 6,831 stations, 540,016 (files), 10,340.00 MB
- Supervision: 313,972 E.A., 13,658,485 (files), 251,090.00 MB
- Post Census: 1,921 stations, 9,222 (files), 812.23 MB
- Administrative: 6,809 stations, 312,816 (files), 2,680.00 MB
- Internet forms: 2,290 stations, 30,079 (files), 57.07 MB
- CENTRAL DATABASE: 281 (tables), 397,517.00 MB (data store)
Thank you!

Luiz Paulo Souto Fortes, PhD
luiz.fortes@ibge.gov.br